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Abstract

Background: Infected cells recognize viral replication as a DNA damage stress and elicit the host
surveillance mechanism to anti-virus infection. Modulation of the activity of tumor suppressor p53
is a key event in the replication of many viruses. They could manipulate p53 function through
phosphorylation modification for their own purpose. But there is rarely research about p53
phosphorylation status in the context of HPV-E6. Therefore, we investigated whether p53 could
be phosphorylated by HPV-E6.

Methods: We used a mammalian green fluorescence protein (GFP) expression system to express
HPV-18E6 with GFP fusion proteins (GFP-18E6) in wild-type (wt) p53 cell lines, such as 293T and
MCF-7 cells to trace the traffic and subcellular location of E6 protein. By immunofluorescence
technique and immunoblotting, we determined the positive phosphorylated sites of p53 and
observed the distribution of phosphorylated p53 in the context of GFP-18E6.

Results: GFP-18E6 was predominantly located in nuclei of wt p53 cell lines, and it could induce
transient phosphorylation of p53 at multiple sites, such as Ser!3, Ser20, and Ser392. All the three sites
of phosphorylated p53s were localized in nuclei together with GFP-18E6.

Conclusion: In GFP with high risk HPV-18E6 fusion protein expressed 293T and MCF-7 cells, the
endogenous wt p53 could be transiently phosphorylated at multiple sites.

Background kb [1,2]. Over 90% of human cervical carcinoma is asso-
Human papillomaviruses (HPVs) are small double-  ciated with high risk mucosal HPVs, mainly the serotypes
stranded DNA viruses with a genome of approximately 8 18 and 16 [3]. The mechanisms underlying the actions of

Page 1 of 8

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18778462
http://www.jeccr.com/content/27/1/35
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

Journal of Experimental & Clinical Cancer Research 2008, 27:35

high risk HPVs leading to cancer have been studied exten-
sively, and it was shown that the E6 and E7 proteins were
the oncoproteins interacting with tumor suppressors p53
and pRb, respectively, and leading to infected-cell trans-
formation and dysregulated proliferation [4,5]. Previous
studies also showed that the principle activity of E6 was to
target and degrade p53, therefore, p53's growth regulatory
functions is abolished [6]. However, many authors
reported the expression of E6 was not necessarily equated
to a p53 null background [7-10]. Therefore, we hypothe-
sized there might be other ways for E6 interaction with
p53.

p53 is a very important tumor suppressor, it can be acti-
vated in response to DNA damage stresses [11-13]. Phos-
phorylation of p53 has been studied intensively and has
been proposed to play a critical role in the stabilization
and activation of p53 [14]. Infected cells recognize viral
replication as a DNA damage stress and elicit the host sur-
veillance mechanism to anti-virus infection [15]. The
modulation of p53 function by phosphorylation seems to
be a major antiviral defense mechanism employed by
cells [16,17]. On the other hand, some viruses have
evolved strategies such as reducing the phosphorylation
of p53 for counteraction p53 activation. For example,
Kaposi's sarcoma associated herpesvirus (KSHV) is associ-
ated with the pathogenesis of Kaposi's sarcoma, KSHV
viral interferon regulatory factorl (vIRF1) greatly reduced
the level of serine 15 phosphorylation of p53, resulting in
an decrease of p53 stability which could circumvent host
growth surveillance and facilitate viral replication in
infected cells [15]. But there is rarely research about p53
phosphorylation status in the context of HPV-EG6.

Methods

Construction of expression vector

Full length HPV-18E6 sequence was amplified by PCR
from HPV type 18 complete genome, and then cloned in
frame within the C terminus of GFP at the Bgl Il and EcoR
I sites of the polylinker regions of the mammalian expres-
sion vector pGFP (Clontech, Palo Alto, CA), producing
plasmid pGFP-18E6.

Cell culture and transfection

The human embryonic 293T kidney cells and human
breast adenocarcinoma MCF-7 cells were maintained in
RPMI1640 medium (Gibco) supplemented with 10%
fetal bovine serum (FBS) at 37°C in a humidified atmos-
phere of 5% CO,. Cells were seeded on glass coverslips in
12-well cell culture plates. The cells were transiently trans-
fected with plasmid pGFP -18E6, pGFP overnight using
Lipofectamine 2000 transfection reagent (Invitrogen,
Carlsbad, Calif).

http://www.jeccr.com/content/27/1/35

Cell imaging by fluorescent microscope

The 293T and MCF-7 cells were grown on glass coverslips,
transfected, and fixed with 4% paraformaldehyde for 10
min at room temperature, rehydrated three times with
cold PBS, then stained with DAPI (4',6-Diamidin-2'-phe-
nylindoldihydrochlorid) at 37°C in the dark for 10 min,
rinsed again with PBS and mounted on slides. Cell images
were collected with a Nikon fluorescent microscope at a
magnification of x400. Fluorescent images were analyzed
using Nikon Software.

Immunoblotting analysis

For each sample, 106 cells were collected by centrifugation
(1000 x rpm for 5 min), washed once with ice cold PBS,
and lysed in 100 pl RIPA buffer containing 50 mM Tris-
HCI [pH 7.4], 150 mM NaCl, 1% NP-40, 0.5% sodium
deoxycholate, 1 mM EDTA, 2.5 mM glycerophosphate, 1
mM PMSF, 10 mM NaF, and phosphatase inhibitor cock-
tail (Roche Diagnostics, Mannheim Germany). Protein
concentration was determined using the BCA reagents
(Pierce, Rockford, IL). Samples (30 nug) were analyzed on
12% SDS polyacrylamide gels, transferred to PVDF mem-
branes (Invitrogen), and blocked for 1 h at room temper-
ature with 5% non-fat milk in TBS buffer (20 mM Tris-
HCI [pH 7.5], 0.5 M NaCl). The membranes were then
incubated with the primary antibody overnight at 4°C.
After three washes with TBS, the membranes were incu-
bated with the secondary antibody for 30 min at room
temperature. After three additional washes, the proteins
were visualized by enhanced chemiluminescence (ECL)
(Amersham Pharmacia, Piscataway, New Jersey, USA).

The following primary antibodies were used: anti-phos-
pho-p53 Ser6, anti-phospho-p53 Ser9, anti-phospho-p53
Ser15, anti-phospho-p53 Ser20, anti-phospho-p53 Ser37,
anti-phospho-p53 Ser46, anti-phospho-p53 Ser 392, anti-
chk2 (Cell Signaling; dilution, 1:1000) and anti-ATM
(sigma; dilution,1:1000).

Immunocytochemistry

The cells were seeded on glass coverslips at a density of 1
x 105 cells/well. Then, they were transfected with plasmid
pGFP -18E6 and pGFP overnight following standard pro-
cedures. After transfection, the cells were washed with PBS
and fixed with 4% paraformaldehyde for 10 min at room
temperature. They were then rehydrated three times with
cold PBS, permeabilized with 1% Triton X-100 for 5 min
on ice, and rinsed with PBS and blocked. The cells were
incubated with primary antibodies overnight at 4°C. Sub-
sequently, signal detection was performed using Cy3 -
conjugated goat anti-rabbit IgG (Sigma; dilution, 1:200)
in blocking solution for 30 min at room temperature in
the dark. Then, the cells were washed three times with PBS
and examined by confocal microscopy. Fluorescent
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images were analyzed using a Leica Confocal Software
(Leica Microsystems).

Statistics

All data were recorded as means + standard deviation, and
analyzed by the SPSS 11.0 software. Analysis of data was
performed using one-way ANOVA for multiple compari-
sons. P values < 0.05 were considered statistically signifi-
cant.

Results and discussion

GFP-18E6 was mainly located in nuclei

Viral E6 coding regions were inserted within the C termi-
nus of the pGFP vector, producing plasmid pGFP-18E®6.
The plasmid pGFP-18E6 was transfected in 293T and
MCEF-7 cells, allowing E6 proteins to be expressed as GFP-
18E6 fusion proteins. By fluorescence microscopy, we
observed the subcellular location of GFP-18E6 and GFP in
both cell lines. Because the E6 fusion proteins may have
low or high expression levels at different times, and
maybe this could affect the distribution of E6. Therefore,
we dynamically observed the location and expression of
proteins from 6 h to 72 h post-transfection. The results
indicated that GFP-18E6 protein was expressed essentially
in the nuclei from 6 h post-transfection. Its expression
increased gradually, and reached its maximum expression
level at 21 h (P < 0.001). Then, it decreased gradually and
disappeared after 1 wk. During this whole period, no
change was observed in protein location. As control, we
observed the expression of GFP alone. It exhibited a dif-
fused signal, and was present in both the nuclei and cyto-
plasm from 6 h to 1 wk post-transfection. In addition, its
location did not change at any time. Representative pho-
tographs of the subcellular location of high risk GFP-18E6
and GFP were shown in Figure 1.

The analysis of relative fluorescence signal intensity of
GFP-18E6 in 293T and MCF-7 cells was shown in Figure
2. We further studied the fluorescence intensity ratio of
GFP fusion protein in nuclei (N) to it in both nuclei and
cytoplasm (N+C) dynamically. In 6 h to 72 h post-trans-
fection, E6 protein essentially located in nuclei and its
value of N/(N+C) was increased from 80% to more than
90% gradually. As GFP control expressing cells, it was
present in both nuclei and cytoplasm, and its value of N/
(N+C) maintained in 50-60% during the whole period
(Figure 2). Taken together, in the GFP with HPV-18E6
fusion protein expressing system, we observed GFP-18E6
was predominantly located in nuclei of 293T and MCF-7
cells.

GFP-18E6 promoted multiple sites phosphorylation of p53
along with up-regulation of ATM and Chk2

Because many viruses could manipulate p53 function
through phosphorylation modification [16,17], we fur-
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ther investigated whether the wt p53 could be phosphor-
ylated by GFP-18E6. We used antibodies for different sites
that recognizing p53 only when it had been modified at
these sites. By immunoblotting, we clearly observed phos-
phorylated p53 at 24 h post-transfected with pGFP-18E6
in both 293T and MCEF-7 cells. The result indicated GFP-
18E6 could induce p53 phosphorylation at three sites:
Ser!5, Ser20, and Ser392. As control GFP expressing cells,
there was no phosphorylated p53 (Figure 3). The other
sites of p53, such as Ser¢, Ser?, Ser37, and Ser4¢ were nega-
tive in both GFP-18E6 and GFP expressing cells (data not
shown). Because the ataxia telangiectasia-mutated kinase
(ATM) is critical for tansducing DNA damage signals to
checkpoint control proteins [18,19], we next asked
whether the phosphorylated p53 was associated with
ATM activation. By immunoblotting, we observed the up-
regulation of ATM and Chk2 (checkpoint kinase 2) in
GFP-18E6 cells (Figure 3). Therefore, our study agreed
with the activation of ATM resulted in phosphorylation or
the activation of downstream checkpoint controls, includ-
ing p53 and Chk2 [20].

Co-localization of GFP-18E6 and phosphorylated p53
proteins

Because high risk HPV-E6 can target and interact with p53
[21], we suspected that the GFP-18E6 and phosphorylated
p53s might locate together. By immunocytochemistry
staining, we observed phosphorylated p53 proteins at
three sites, including Ser!>, Ser20 and Ser3°2, which were all
highly expressed at 24 h post-transfected with pGFP-18E6
in 293T and MCF-7 cells. This was consistent with our
results by immunoblotting analysis as noted above. Fur-
thermore, we observed the phosphorylated p53s were
located in nuclei together with GFP-18E6. Figure 4A
shows representative photographs of the co-localization
of GFP-18E6 and phosphorylated p53 proteins. Taken
together, the three sites of phosphorylated p53s were
essentially located in nuclei together with GFP-18E6.

Level of phosphorylated p53 along with time course

Since the expression of GFP-18E6 was associated with
time course, we next determined the three sites of phos-
phorylated p53 level in 293T and MCF-7 cells from 12 h
to 72 h post-transfection dynamically. For GFP-18E6
expressing cells, the Ser!5, Ser20 of p53 were firstly detected
at 12 h post-transfection and increased gradually, signifi-
cant accumulation was observed at 24 h (P < 0.001). The
expression level of Ser!> was higher than Ser20 at the same
time point. It should be noted that phosphorylation of
Ser392 was not present at 12 h in GFP-18E6 transfected
MCE-7 cells, whereas it was highly expressed in GFP-18E6
transfected 293T at the same time. In both cells, the Ser392
reached highest level at 24 h post-transfection (P < 0.001).
From 48 h to 72 h post-transfection, the three sites of
phosphorylated p53s were not detected. As GFP control
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Nuclei

Figure |

GFP-18E6 is predominantly located in nuclei. Representative photographs of 293T and MCF-7 cells at 21 h after trans-
fection with GFP and GFP-18E6 expression plasmid. The green fluorescence is emitted by the cells transfected with pGFP and
pGFP-18E6 respectively. The red is DAPI stained nuclei. Scale bar = 8 um. The photographs are examined at 400% magnifica-

tion by fluorescence microscope.

expressing cells, there was not phosphorylated p53 at
Ser!>, Ser?0, and Ser3°2 during the whole period (Figure
4B). Thus, in 12 h to 24 h expression of GFP-18E6 there
was a short term activation of p53 by phosphorylating
modification. Because activation of p53 can also be mod-
ulated at the transcription level [22,23], we next asked
whether the mRNA level of p53 was increased by the
expression of GFP-18E6. By reverse transcriptase (RT)-
PCR, we clearly observed the mRNA of p53 was not
changed in GFP-18E6 expressing cells (data not shown).
This agreed with the mRNA level of p53 was stable in the
context of HPV-E6 [24,25].

Phosphorylation of p53 at Ser!> and Ser20 were the earliest
response to E6 expression. It is general believed Ser!5
phosphorylation of p53 occurs rapidly in response to
DNA damage and appears to represent a 'priming event'
for the subsequent series of modifications [26]. Because

phosphorylation of Serl5 induced by ATM/ATR (ATM-
and-Rad3-related) results in dissociation of p53 from its
negative regulator mdm-2, it has been suggested that the
primary effect of phosphorylation of p53 at Ser!s is to
increase p53 level [27]. The Ser20is also critical for stabi-
lizing of p53. Recent studies have demonstrated that Ser20
on p53 is phosphorylated by Chk1 (checkpoint kinase 1)
or Chk2, enhancing its tetramerization, stability, and
activity in response to DNA damage [28]. In fact, phos-
phorylated sites at the Ser!> and Ser20 residues lie right
under the binding pocket of mdm-2, which could disrupt
the binding with mdm-2, resulting stabilization of p53
[29]. In the present study, the level of phosphorylation of
p53 at Serl> was clearly higher than Ser20. It's probably
because Ser!> phosphorylation of p53 was a more impor-
tant target than Ser2°in the context of HPV-18E6. This was
consistent with some data reported that removing Ser!>
can abrogate phosphorylation at Ser2° [30]. For phospho-
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Figure 3

HPV-18E6 promotes multiple sites phosphorylation
of p53 along with up-regulation of ATM and Chk?2.
The phosphorylated responses appear obviously at three
sites: Ser!5, Ser20, and Ser392 of p53 along with the up-regula-
tion of ATM and Chk2 at 24 h in GFP-18E6 expressing 293T
and MCF-7 cells. IgG is an irrelative antibody used as the neg-
ative control. Data are normalized to [-actin and representa-
tive of three independent western blot analyses.

rylation of p53 at Ser3°2, it was even not same for both
cells. In 293T cells, phosphorylation of p53 at Ser392
appeared earlier and higher than MCF-7 cells. Thus, the
different responses of Ser392 maybe due to varied sensitiv-
ity of cells. Authors reported phosphorylation of p53 at
Ser392 was an early response to a wide range of stress-
inducing conditions. Ser392 is phosphorylated by the pro-
tein kinase CK2 after both UV and ionizing radiation
treatment [31]. It has been shown to enable the transcrip-
tional activation of the p53 protein in vitro and also
seems to be important for p53-mediated transactivation
in vivo [32,33]. Therefore, the phorsphorylation of p53 at
Ser15, Ser20, and Ser3°2 could stabilize and activate p53,
which ultimately induces the irreversible cell cycle arrest
and apoptosis in response of DNA damage stress [30].

It has been proved the tumor suppressor p53 could induce
cell cycle arrest or apoptosis in response to stresses, such
as UV radiation, DNA damage, hypoxia or virus infection
[11,12]. Previous also studies showed E6 could target and
degrade p53, which in turn inhibited apoptosis [4]. In
present study, we clearly observed the phosphorylating
modification of p53 in the early stage of HPV-18E6
expressing. The phosphorylation of p53 could induce
apoptosis or cell cycle arrest in response to DNA damage
stresses [29-31]. Regulation of p53 phosphorylation has
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Localization and expression level of phosphorylated p53 proteins. (A) In 293T and MCF-7 cells, the phosphorylated
p53s are located in nuclei together with GFP-18E6. Green fluorescence indicates the protein of GFP, and GFP-18Eé expressed
by the transfected cells, Red fluorescence indicates phosphorylated p53 proteins, which are labelled with phosphorylated anti-
p53 antibodies plus anti-rabbit-Cy3 secondary antibody. The photographs are examined at 400x magnification by confocal
microscopy. Scale bar = 8 um. The results shown are representative of three independent experiments. (B) Level of phospho-
rylated p53 in the context of GFP-18E6 from 12 h to 72 h. The data of phosphorylated p53s level are examined by fluorescence
intensity. 100 cells are examined for each phosphorylated site of p53 from 20% random fields.

also been shown to be induced by many viruses, such as,
Africa swine fever virus (ASFV), the p53 in host cell is sta-
bilized by phosphorylation at Ser392 and is located in the
nuclei. During infection, the phosphorylated p53 is func-
tionally active to induce apoptosis along with the expres-
sion of p21 and mdm?2 [16]. The Epstein-Barr virus (EBV)
can activate p53 through phosphorylated modification at

Ser15, Ser20, and Ser392 modulated by its oncogenic protein
LMP1. Additionally, the phosphorylated p53s were asso-
ciated with MAPK (mitogen-activated protein kinase) and
the activation of MAPK kinase could target the transcrip-
tion factors to anti-virus infection [17]. Thus, our result
agreed with Shin and others, who reported infected cells
recognized viral replication as a DNA damage stress and
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elicit the host surveillance mechanism to anti-virus infec-
tion [15]. On the other hand, malignant transformation
usually takes a long term, where it is important that onco-
gene E6 integrated in the genome of host and degraded
P53 [34]. It was easy to understand, in the present study,
we constructed a short transient expression system, the
over-expression of E6 can partly mimic the large infection
of HPV in the early stage, where the oncogene E6 is not
integrated in the genome of host. With over-expressed
exotic DNA of E6, the host cells might clean them up
through activating apoptosis pathway. This also agreed
with authors, who reported compared to the prevalence of
HPV infections in the general population, the number of
lesions that progress to cancer is very low [35]. The cells
infection with high risk HPV might take a self limited
process through apoptosis mechanism without progress-
ing to cancer. Thus, the present study gave us an implica-
tion that giving the patient correct treatment on the early
stage of HPV infection, which will be helpful not to
progress to cancer.

Conclusion

In conclusion, the present study provided a new pattern of
interaction between HPV-18E6 and p53. That was, GFP-
18E6 could transiently induce p53 phosphorylation at
three sites, Ser!5, Ser20, and Ser32in both 293T and MCF-
7 cells by the activation of ATM and/or Chk2 pathway.
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