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Abstract

Lung cancer remains the leading cause of cancer-related deaths globally, and the survival rate remains low

despite advances in diagnosis and treatment. The progression of lung cancer is a multifaceted and dynamic phenom-
enon that encompasses interplays among cancerous cells and their microenvironment, which incorporates immune
cells. Exosomes, which are small membrane-bound vesicles, are released by numerous cell types in normal and stress-
ful situations to allow communication between cells. Tumor-derived exosomes (TEXs) possess diverse neo-antigens
and cargoes such as proteins, RNA, and DNA and have a unique molecular makeup reflecting tumor genetic complex-
ity. TEXs contain both immunosuppressive and immunostimulatory factors and may play a role in immunomodu-
lation by influencing innate and adaptive immune components. Moreover, they transmit signals that contribute

to the progression of lung cancer by promoting metastasis, epithelial-mesenchymal transition (EMT), angiogenesis,
and immunosuppression. This makes them a valuable resource for investigating the immune environment of tumors,
which could pave the way for the development of non-invasive biomarkers that could aid in the prognosis, diagnosis,
and immunotherapy of lung cancer. While immune checkpoint inhibitor (ICl) immunotherapy has shown promising
results in treating initial-stage cancers, most patients eventually develop adaptive resistance over time. Emerging
evidence demonstrates that TEXs could serve as a prognostic biomarker for immunotherapeutic response and have

a significant impact on both systemic immune suppression and tumor advancement. Therefore, understanding

TEXs and their role in lung cancer tumorigenesis and their response to immunotherapies is an exciting research

area and needs further investigation. This review highlights the role of TEXs as key contributors to the advancement
of lung cancer and their clinical significance in lung immune-oncology, including their possible use as biomarkers

for monitoring disease progression and prognosis, as well as emerging shreds of evidence regarding the possibility

of using exosomes as targets to improve lung cancer therapy.
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Introduction

Lung cancer continues to be one of the most prevalent
forms of malignant tumors, primarily bronchogenic
carcinoma and is responsible for a disproportionately
high percentage of cancer-related deaths worldwide [1].
Lung cancer can be classified into two histological types,
namely small-cell lung cancer (SCLC) and non-small cell
lung cancer (NSCLC), which make up 15% and 85% of
all cases, respectively. Lung cancer is defined by differ-
ent genetic alterations and a strong hereditary compo-
nent [2], and the majority of patients are diagnosed at an
advanced or metastatic stage (up to 85%), which is asso-
ciated with a poor prognosis [3]. As a result, it is critical
to study carcinogenesis and cancer therapies, especially
for lung cancer, which would benefit greatly from early
detection because delayed detection raises the risk of
mortality [4, 5].

Recent advances in immunotherapy have dramati-
cally altered the treatment perspective for lung cancer,
with effectiveness rates far exceeding those of conven-
tional chemotherapy [5-7]. Despite the limited success
of immunotherapies in treating lung cancer, their effec-
tiveness is restricted to a small subset of patients, and the
development of primary and secondary resistance makes
therapy more challenging [8]. One plausible justification
for this phenomenon is the diverse composition of lung
cancer cells, each with unique molecular and epigenetic
alterations, resulting in a heterogeneous and complex
tumor microenvironment (TME) [9, 10]. Furthermore,
immunotherapy and medications that act as immune
checkpoint inhibitors (ICIs) are only beneficial to a sub-
set of patients with lung cancer [8, 11, 12]. Therefore,
advancing knowledge of molecular pathways underlying
lung cancer, early identification and targeted therapeutic
development are imperative.

Exosomes, first identified in the early 1980s as vesi-
cles that slough off from both normal and cancerous cell
lines, belong to the extracellular vesicle (EVs) family [13,
14]. Although previously considered cellular trash recep-
tacles, they are now acknowledged for their ability to pro-
mote cross-talk with cellular surroundings [15, 16]. They
are bioactive lipid bilayer nanovesicles with a 40—150 nm
diameter released by practically all types of normal and
malignant cells [16, 17] and are generated through the
endo-lysosomal pathway and stem from a specific endo-
somal compartment called multivesicular bodies (MVBs)
[18, 19]. Exosomes transport a variety of substances,
mostly proteins, lipids, DNA and RNA (mRNA and non-
coding RNA), crucial for intercellular signal transmission
[15, 18].

Exosomes have a crucial function in the TME and can
act as a diagnostic and prognostic marker for the altera-
tion of TME and the progression of cancer to a certain
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degree [20]. Their importance stems from their ability to
enable intercellular communication and convey a diverse
range of micro-molecules and signaling chemicals
between cancer cells and the adjacent cells that comprise
the TME [17, 21]. Exosomes may promote tumor pro-
gression [22-25] by enhancing tumor cell proliferation
[26-29], angiogenesis [30—33] and metastasis [21, 34].

Exosomes, as major carriers of cell content exchanges,
have received much interest for their function in lung
cancer [34—41] and other forms of cancer [42-49], as
well as inhibiting immunological responses and regulat-
ing TME [37, 50, 51]. With physiologically active pro-
teins, they can decrease cytotoxicity and modulate the
expression of genes associated with immunity in T cells,
thus augmenting the capacity of tumor cells to evade the
immune system [51]. Furthermore, normal and cancer-
ous cells exhibit significant differences in the amount
and composition, indicating a certain degree of selectiv-
ity [52]. As a result, the identification of exosomes can
be beneficial in disease diagnosis and tumor progno-
sis. Based on findings of a positive correlation between
tumor-derived exosomes (TEXs) with attenuated immu-
nity and responses from immunotherapy, the role of
exosomes in tumor immunity and immunotherapy
response is an area of current research. TEXs have been
associated with immunological intercommunication,
signaling and are believed to be a promising biomarker
for lung cancer immunotherapy [20, 37, 50, 53, 54], and
an intriguing aspect is their release by cancer cells and
ability to affect normal cells. Moreover, they have poten-
tial utility as a diagnostic tool for various cancers as they
are found in diverse biological specimens such as blood,
urine, cerebrospinal fluid and saliva [14, 41]. Further,
due to their ability to convey signals between tumor and
immune cells, TEXs are targeted in novel cancer immu-
notherapy developments [55-57].

Although the advent of immune checkpoint inhibi-
tion therapy has significantly changed the cancer treat-
ment landscape [58], to fully comprehend this therapy’s
efficacy, a deeper understanding of its successes and fail-
ures is crucial. Recent investigations into the composi-
tion of exosomes have uncovered the presence of various
immune checkpoint proteins in them, particularly those
that originate from tumors, such as programmed death
ligand 1 (PD-L1) [59]. Many researchers now hypoth-
esize that immune checkpoint proteins in exosomes play
a crucial role in a new mechanism for mediating tumor
immune evasion. This suggests that targeting these
checkpoint molecules could represent a novel approach
to cancer immunotherapy, with immune checkpoint
blockade as a promising method for activating anti-
tumor immunity [58-64]. Such blocking of exosome
secretion along with immune checkpoint proteins may
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further enhance the effectiveness of anti-tumor immune
responses, paving the way for new possibilities in tumor
immunotherapy.

Recently, exosomes have drawn much attention
because of their potential to assist cancer patients with
diagnostic and treatment outcomes using liquid biopsy
[55, 65]. The nucleic acids, proteins, and lipids found in
TEXs may also share traits with their parental cells, mak-
ing them a possible source of new biomarkers [41, 55,
66]. Additionally, growing evidence suggests TEXs which
freely circulate in bodily fluids and contain micro and
long non-coding RNAs (miRNAs and IncRNAs), can be
used as prognostic or predictive biomarkers for response
to anti-tumor therapies in NSCLC [2, 40, 51, 66—68].

The current overview starts by describing how TEXs
are produced and released into the extracellular matrix
of cells and discussing the components that constitute
TEXs. The review then delves into how TEXs can modu-
late the immune system, immunotherapy as a drug deliv-
ery vehicle, various immunological checkpoints and the
potential for TEXs to serve as diagnostic and prognostic
biomarkers for lung cancer, including TEX-derived can-
cer vaccines.

Biogenesis and composition of tumor-derived
exosomes (TEXs)

Exosome biogenesis is a well-regulated process influ-
enced by lipid complexes and proteins involved in
endocytosis [69] and initiated by the synthesis of early
endosomes by engulfing specific domains of the cellular
membrane. When the restricting membrane of initial
sorting endosomes folds inwards, multiple intralumi-
nal vesicles are formed, creating multivesicular bodies.
Exosomes are ultimately discharged into the extracellu-
lar milieu by merging multivesicular structures with the
plasma membrane [15, 38, 69].

Exosome production is a highly regulated process
occurring through either of two mechanisms, one
dependent on and another independent of the endoso-
mal sorting complex required for transport (ESCRT) [69,
70]. ESCRT is well acknowledged as the primary regula-
tor of early endosome development and late endosome
transformation inside multivesicular bodies (MVBs) [71].
The other mechanism involves ceramide/tetraspanin-
dependent pathway [72, 73].

Both ESCRT-dependent and independent pathways,
may differ based on the type of cell and payloads. Moreo-
ver, additional signals and pathogenic stimuli the cell is
exposed to might also have an impact. Exosomes, upon
release, can transfer crucial information to their target
cells through a variety of mechanisms. These mecha-
nisms primarily include endocytosis or phagocytosis, and
other processes (membrane fusion, micropinocytosis,
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Receptor- and Raft-mediated Endocytosis) whereby the
exosomes are engulfed by the recipient cells and their
contents are subsequently released within the cytoplasm
[73]. Furthermore, receptor-ligand interactions between
exosomes and target cells can trigger particular signaling
pathways in the target cells, causing functional changes
[71, 73]. This cargo delivery has substantial biological
consequences ranging from changes in the transcrip-
tome and proteome of the receiving cells to changes in
their cellular activities [74]. Importantly, there is a pos-
sibility that certain exosomes are discharged from cells
through a process of direct outward budding and fission
of the plasma membrane, which is similar to the release
of microvesicles and apoptotic blebs [73].

The lipid-protein bilayer membrane of TEXs present
in all tumor tissues and bodily fluids contains a vari-
ety of proteins, including transport and fusion proteins,
adhesion molecules, inhibitory ligands, MHC molecules,
tetraspanins, tumor-associated antigens, chaperones,
glycolipids [22, 38, 52, 69, 70, 75]. The intravesicular con-
tents of TEXs and made up of proteins, lipids, nucleic
acids, including mRNA, miRNA, long non-coding RNA,
circRNA and are functional when taken up by target
cells [37, 53, 74] (Fig. 1). Inside the TME, TEXs are able
to transmit information from the primary tumor to the
recipient cells, such as immune cells [50]. Therefore,
TEXs carry oncogenic material to their destination cells
which can have a wide range of effects depending on the
cells and circumstances and are regarded as surrogates of
parent tumor cells since they mirror the molecular and
genetic makeup of these cells.

TEXs and the tumor microenvironment in lung
cancer

Cancer cells are aberrant cells that develop rapidly and
uncontrollably, eventually producing abnormal tissue and
tumors. The development and advancement of tumors
rely significantly on the characteristics of the surround-
ing microenvironment, which includes both cellular and
non-cellular factors [37, 76]. Exosomes play a vital role in
transmitting messages between cells and regulating the
TME, which is composed of diverse components exhib-
iting different characteristics depending on the origin of
the tumor [20, 76]. The most predominant components
of TME include carcinoma cells, immune cells (such as
T and B lymphocytes, natural killer cells, dendritic cells,
and macrophages), extracellular matrix (ECM), stro-
mal cells (including fibroblasts and adipocytes), a sys-
tem of lymphatic and blood vessels [77]. The molecular
and cellular characteristics of the TME influence the
local immune responses, which consequently affects the
severity of the malignancy [78]. Furthermore, TME cells
communicate directly and indirectly through cell-to-cell
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Fig. 1 Biogenesis, molecular and cellular composition uptake and transfer mechanisms of tumor-derived exosomes (TEXs) in tumor
microenvironment (TME): 1. the tumor microenvironment (TME) is contains tumor cells that coexist alongside immune cells, fibroblasts, and blood
vessels, collectively forming the complex TME. 2. Tumor cells contain tumor-derived exosomes (TEXs) that are created from intraluminal vesicles
within multivesicular bodies (MVBs). The process begins with the formation of early endosomes through the inward budding of membrane

tiny domains from the plasma membrane. These endosomes, which ultimately become MVBs, are dynamic subcellular structures where RNA

and cytoplasmic proteins are stored. These MVBs are either incorporated into exosomes by combining with the plasma membrane or they are
degraded by lysosomes. Exosomes acquire new components during this transformation, including proteins, nucleic acids, and lipids. 3. Schematic
representation of the cellular and molecular composition of TEXs. Specific payloads packed inside TEXs include a variety of proteins, DNAs,
metabolites, lipids, mMRNAs, and miRNAs, and IncRNAs. Specific membrane proteins that act as biomarkers, such as chaperones, tetraspanins,

MHC I'and Il, tumor-associated antigens, growth factor receptors, and some cytoskeletal proteins, enzymes, are present on the surface

of exosomes. 4. The exosomes ultimately release their contents, such as DNA, microRNA and proteins, into recipient cells via different mechanisms
including endocytosis/phagocytosis, direct membrane fusion and receptor-ligand interactions. Figure created with BioRender.com

interaction and the production of soluble substances processes such as regulating the immune response, con-
and vesicles, and direct cell contact and signaling are trolling EMT [80], influencing the function of cancer-
facilitated by cell junctions and ligand-receptor recogni-  associated fibroblasts (CAFs) [81], and engaging in a
tion. Thus, with exosomes acting as key communication  crucial role in angiogenesis [32]. TEX-mediated commu-
molecules between cancer cells and adjacent cells, TME  nication and immunomodulation in the tumor microen-
is vital in carcinogenesis, progression, and treatment vironment are illustrated in Fig. 2.
response [37, 50].

Exosomes that originate from tumor cells are com- Tumor-derived exosomes (TEXs) and immune
monly known as TEXs [79]. The nucleic acids present response modulation in lung cancer
in TEXs, such as microRNAs and messenger RNAs, In the course of cancer development, cellular crosstalk in
can be transferred from the tumor cells to other cells in  the TME and various immune cells is a central driver of
the microenvironment, where they can influence gene tumor progression. When it comes to cancer, the immune
expression and cellular behavior. When transferred to  system has a double-edged sword effect in encouraging
recipient cells, they carry both activating and inhibit- chronic inflammation and stifling antitumor immunity
ing components that facilitate communication between  while also killing cancer cells and slowing tumor devel-
tumor cells and their microenvironment. In addition, opment. Recent research suggests TEXs play a vital role
exosomes are known to participate in various biological as important mediators of cellular communication by
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Fig. 2 Tumor-derived exosome (TEX) mediated communication and immunomodulation in the tumor microenvironment (TEX): TEXs transmit
immunosuppressive and immunostimulatory signals to immune cells, influencing the immunological response in TME. In terms of immunological
suppression, TEXs can cause immune cells like T cells to undergo apoptosis which is required for an efficient immune response against cancer
cells. Moreover, TEXs can limit the function of effector T lymphocytes impairing tumor cell killing. TEXs have also been demonstrated to increase
macrophage M2 polarization, promoting tumour development and blocking the immunological response to tumors. TEXs can also increase

the number of MDSCs, immunological cells that reduce T cell function, further suppressing the anti-tumor immune response. TEXs have also been
reported to decrease the development of dendritic cells required for T cell activation and initiating an immunological response. However, TEXs can
stimulate the immune system, boost anti-tumor activity and increase the activity of macrophages and NK cells, which play crucial role in destroying
cancer cells. TEXs have also been shown to block macrophage M2 polarization which can stimulate an anti-tumor immune response and directly
or indirectly boost T cell activation resulting in greater tumor cell death. These immunostimulatory activities of TEXs have the potential to stimulate

an effective immune response against cancer and perhaps enhance cancer patient outcomes. Figure created with BioRender.com

transmitting both immuno-inhibitory and immune-stim-
ulatory signals to immune cells of TMEs in lung cancer.
The effect of immune cell-derived TXEs on the TME
in lung cancer is outlined is Table 1 in accord with the
recent studies.

Natural killer cells (NKs) and interaction

between exosomes in the lung TME

Natural killer (NK) cells are components of innate
immune cells capable of acting independently and
expressing several receptors with stimulatory or sup-
pressive functions [35]. They can directly attack tumor

cells without being restricted by a major histocom-
patibility complex (MHC) and play a crucial role in
immuno-surveillance [99]. Tumor cells, on the other
hand, interfere with normal NK cell activities and
impede cytotoxicity in the TME [77]. In lung cancer, the
degree of NK cell infiltration is associated with survival
rate [20]. Recent research has shown that in lung can-
cer, TEXs containing miR-21/29a can attach to internal
toll-like receptors (TLRs) located on natural killer cells
(NKs). This attachment activates a protein called NF-B,
leading to the initiation of an inflammatory response
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that supports metastasis and the advancement of the
tumor [100].

Additionally, hypoxia also impairs the immune char-
acteristics of NK cells [101]. The reduced activity of NK
cells, which has been observed in lung cancer patients, is
likely a result of the suppression of cell-surface receptors,
specifically the natural killer group 2D (NKG2D) recep-
tor, a member of a family of transmembrane proteins that
function as activators and resemble C-type lectins [101,
102]. Transforming growth factor f1(TGF-p1) is trans-
ferred to NK cells via exosomes generated from hypoxic
tumor cells, which decrease NK cell activity, leading to
desensitization and inhibition of NKG2D receptors in
lung cancer [101, 103]. In hypoxic exosomes, miR-23a
functions as an immune-inhibitory component by over-
whelming the expression of CD107a in NK cells [101].
Notably, in NK cells, endocytosis of NKG2D suppresses
the production of surface receptors and controls how
cells respond to signals. TEXs are implicated in the inhi-
bition of NK cell function through several mechanisms,
including the dampening of IL-2 signaling pathways,
decreased synthesis of perforin, and the activation of
Janus kinase (JAK-3) [104].

Dendritic cells (DCs) regulation by TEXs in lung TME
Dendritic cells (DCs) are natural immune cells that play
an important role in coordinating the immune system’s
reaction to malignant tumors. These cells are derived
from hematopoietic progenitor cells and serve an impor-
tant part in the natural immunological response [105].
DCs act as antigen-presenting cells (APCs) and identify
and ingest pathogens before displaying them to immune
cells such as T cells. This process involves the interaction
of surface receptors and co-stimulatory proteins, which
activate the immune response [106]. Furthermore, DCs
release cytokines and chemokines, which can influence
the microenvironment and tumor formation [106, 107].
TEXs have been implicated in immune system modula-
tion by influencing monocyte differentiation and matu-
ration, and TMEs are well known for instructing DCs
to enhance tumorigenicity [108]. Exosomes released by
lung tumor cells play a crucial role in this scenario by
efficiently transporting a wide range of tumor antigens to
DCs as well as shuttling signaling molecules and facilitat-
ing cell-to-cell contact [109]. TEXs associated with lung
cancer have been found to be highly efficient at deliver-
ing various tumor antigens to DCs and are observed to
stimulate DC maturation and MHC cross-presentation
resulting in a specific cytotoxic T cell response against
tumors [93, 110].

Huang et al. have demonstrated how exosomes derived
from lung cancer biopsies possess heightened levels of
epidermal growth factor receptor (EGFR) [111]. These
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exosomes can activate tolerogenic dendritic cells (DCs)
and regulatory T cells, resulting in the reduced expres-
sion of tumor antigen-specific CD80 and CD86 cells
leading to the inhibition of DC maturation and func-
tion [111]. Furthermore, Li et al. demonstrated that DC
exosomes carrying neoantigens could decrease tumor
development, prolong survival, inhibit tumor formation
and eradicate lung metastasis. Dendritic cell-derived
nano-vaccines induce significant immune responses from
antigen-specific and broad-spectrum T and B cells [112].
The treatment is safe and compatible, suggesting that it
may have the potential for personalized immunotherapy
in lung cancer.

Myeloid-derived suppressor cells (MDSCs)
regulation by TEXs in lung TME
The TME contains a heterogenous group of immature
myeloid cells known as myeloid-derived suppressor cells
(MDSCs), which possess immunosuppressive proper-
ties [113] and whose activation and proliferation through
intercellular communication are aided by tumor cells in
the TME. Once expanded, MDSCs suppress the immune
system’s response against the tumor. Their behaviour can
be altered by TEXs, whose production and release can
be influenced by the TME [65]. This includes facilitating
their activation, promoting their growth and enhancing
their ability to suppress the immune system. Cancer is
associated with an increase in MDSCs, an immature pop-
ulation of myeloid cells known to inhibit the antitumor
T cell response [114]. MDSCs normally shield the body
from the detrimental effects of excessive immune reac-
tions during abnormal events such as wound repair.

Nevertheless, they promote angiogenesis, invasion,
and metastasis while suppressing anti-tumor activity
within the tumor microenvironment [115]. It has been
demonstrated that TEXs cause the differentiation of
myeloid progenitor cells into MDSCs with potent sup-
pressive characteristics. Furthermore, MDSCs control T
cell activity to create an immunosuppressive milieu, and
exosomes containing pro-inflammatory cytokines (inter-
leukin-6 [IL-6], tumor necrosis factor-a [TNF-a] and
tumor-associated cytokines (granulocyte—macrophage
colony-stimulating factor [GM-CSF], macrophage col-
ony-stimulating factor [M-CSF]) aid in this process [65].
Moreover, exosomes released from lung cancer cells spe-
cifically target a population of MDSCs as their primary
target. T cell proliferation is inhibited by the internaliza-
tion of lung cancer-derived exosomes by MDSCs which
leads to an increase in the production of molecules such
as TGEB- and PGE2 [116].

Additionally, in vivo mice studies have demonstrated
that TEXs trigger the accumulation of MDSCs and the
heightened secretion of inflammatory mediators, such



Khan et al. J Exp Clin Cancer Res (2023) 42:221

as IL-6 and vascular endothelial growth factor (VEGF),
as well as immunosuppressive agents like nitric oxide
and reactive oxygen species, ultimately leading to T cell
death [117]. Available evidence also suggests that exoso-
mal heat-shock protein 72 (Hsp72) located on the surface
of TEXs can stimulate signal transduction and activation
of transcription 3 (STAT3) [118]. This, in turn, triggers
the production of autocrine IL-6 in MDSCs via toll-like
receptor/MyD88 (TLR2/MyD88), further enhancing the
immunosuppressive capacity of MDSCs [119].

Tumor-associated macrophages (TAMS) regulation
by TEXs in lung TME
The TME plays a pivotal role in the progression and spread
of tumors. Macrophages are one of the immunological
cells most prevalent in the TME and show distinctive phe-
notypic alterations in response to varying environmental
conditions. These phenotypes can be broadly categorized
into two types: M1 macrophages, which are classically
activated, and M2 macrophages, which are alternatively
activated. M1 macrophages have anti-tumor proper-
ties, while M2 macrophages possess anti-inflammatory
characteristics and contribute to tumor promotion [120].
Tumor-associated macrophages (TAMs), which include
both resident macrophages and monocytes drawn to
the TME, are defined as macrophages that infiltrate the
tumor tissues in the TME and are vital for fostering pre-
metastatic niches, facilitating tumor progression, enabling
chemoresistance, proliferation, metastasis, survival, and
genetic instability of cells. TAMs exhibit an immunosup-
pressive behavior similar to M2-like macrophages [121].
The significance of TAMs in these pathways has been
underlined in several research [122]. The two primary
mechanisms underlying these activities are classic and
alternative activation of macrophages. Unlike alternative
activation (M2), which is associated with immunosup-
pression, cancer and angiogenesis, classical activation of
macrophages (M1) is characterized by the production
of antitumor and pro-inflammatory macrophages [123].
Exosomes secreted by NSCLC cells have the capacity to
induce MO macrophage and myeloid-derived suppressor
cell development into M2 macrophages. Furthermore,
exosome-induced M2 polarization is not dependent on
the p53 gene [26]. TAM-derived exosomes have a unique
proteomic profile and more active proteases. Further,
exosomes induced by hypoxia increase macrophage
recruitment and facilitate M2-like polarization in both
in vitro and in vivo settings, and hypoxic lung cancer cell-
derived exosomes polarize macrophages to the M2-type
phenotype via miR-103a [83].

In monocyte survivability and TAM production within
the tumor-inflammatory microenvironment, TEXs play
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a crucial role. Fibrosis, metabolism, cellular debris and T
cell activity are directly and indirectly influenced by mac-
rophages by the secretion of pro-inflammatory chemicals
[122]. For example, STAT3 is largely phosphorylated by
IL-6 generated by macrophages which promote tumor
growth and metastasis [124]. It has been shown that
Neuropilin-2 (NRP2), produced by TAMs, stimulates the
formation of tumors by controlling the efferocytosis of
tumor cells that have died [125]. Additionally, this path-
way supports immunological suppression. Furthermore,
it has been found that NSCLC cells can acquire features
similar to cancer stem cells (CSC) when exposed to
TAM-derived interleukin-10 (IL-10). The JAK1/STAT1/
NE-B/Notchl signaling pathway mediates this action
[126].

Furthermore, the amount of pro-inflammatory cytokines
in lung cancer enhancing carcinogenesis and metastasis
can be boosted by TEXs, and the regulation of their release
is significantly related to microRNAs [127]. The EV-carry-
ing microRNAs produced from lung cancer miR-16, -21
and -29a bind to TLR7/8 on the surface of macrophages
to provoke phosphorylation activation of NF-kB, which
in turn, promotes an increase in the production of pro-
inflammatory cytokines such as IL-6 [128].

Effect of TEXs on Treg/T cell regulation in lung
cancer
TEXs have a wide variety of pathways at their disposal
to influence T cells. By lowering the stability, prolifera-
tion and regulatory activities of these, TEXs are able to
change anti-tumor response [129]. They can also affect
T cell effector function directly or indirectly by sup-
pressing activated CD8+ T cell activity, causing CD8+T
cell death through pro-apoptotic molecules, stimulat-
ing Treg expansion and inducing T cell depletion [130].
Exosomes produced from tumors have been shown to be
responsible for the transformation of CD4+CD25neg T
cells into CD4+ CD25highFOXP3+T regulatory cells
(Tregs) [81, 130]. Research has shown that the fraction of
CD4+CD25+ Foxp3 + Tregs in the TME and functional
modifications of T lymphocyte subsets are essential for
the immune evasion of lung cancer cells. The available
data suggests lung cancer cell-derived exosomes affect
DCs leading to an increase in the development of Treg
cells in the TME, a reduction in the quantity of CD4+T
cells and inhibition of IFN-y generation [130].
Furthermore, the adenosine pathway is regulated by
TEXs, increasing CD39 expression and adenosine syn-
thesis in Treg [131]. CD73 and CD39 are two enzymes
found on Treg’s surface that catalyse adenosine produc-
tion from ATP [132]. TEXs have surface CD39 and CD73
and directly distribute membrane-tethered CD73 to
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CD39+ cells [132]. Further, they reduce local immunity
by generating extracellular adenosine, which negatively
regulates T-cell activation [54]. These TEX-mediated
processes play a significant role in tumor resistance regu-
lation and can increase tumor invasion in malignancies.

PD-L1 immunotherapy is increasingly used in clini-
cal practice to target exosomal PD-L1, which modulates
T-cell activity and the immune environment around
cancerous tumors [133]. Recent studies indicate that
tumor cells produce exosomal PD-L1, which hinders
T-cell activation and promotes tumor growth [134]. It
has been demonstrated that MiR-214 gets transported
into recipient CD4+ T cells by TEXs to downregulate the
PTEN-mediated signaling, promoting Treg proliferation
and tumor progression [135], and it is interesting to note
that co-incubation of Treg with TEXs may increase Treg
quantity as well as its suppressive activity in lung cancer
[136].

Modulation of cancer-associated fibroblasts (CAFs)
by TEXs in lung cancer

Fibroblasts are normally stimulated to aid in the healing
of wounds by producing an extracellular matrix (ECM)
that acts as a scaffold for other cells [137]. Myofibroblast-
like cancer-associated fibroblasts (CAFs) commonly
constitute the majority of the TME and can modulate
fibroblast activity [138]. Contrary to typical fibroblasts,
CAFs emit pro-invasive chemicals such as ECM-degrad-
ing proteolytic enzymes and produce excessive ECM.
Therefore, they promote ECM restructuring and infil-
tration by producing a variety of cytokines, chemokines,
matrix-degradable enzymes and growth factors [139].
Unknown molecular processes in the TME cause nor-
mal fibroblasts (NFs) to develop into CAFs and the phe-
notype of fibroblasts can be altered by exosomes and
associated substances released by lung cancer cells [140].
Exosomes formed from CAF that include amino acids,
lipids and intermediates of the TCA cycle deliver nutri-
ents to malignant cells by a process analogous to micro-
pinocytosis and are consumed by cancer cells for energy
metabolism [141]. Therefore, exosomes enhance tumor
development in situations that involve nutritional short-
age or nutrient stress.

MiRNAs have a significant role in fibroblast differ-
entiation and activation, as shown by the fact that dys-
regulation of miR-142-3p production causes normal
fibroblasts to differentiate into CAFs by altering TGF-
signaling [141]. It is also believed that CAF induces
tumor angiogenesis, and some studies have reported
that exosomes derived from lung cancer patients can
modulate and induce cancer cell reprogramming. In lung
cancer patients, exosomes overexpressing miR-210 can
stimulate CAF activities and promote the synthesis of
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proangiogenic proteins via activating the JAK2/STAT3
pathway [89].

Recently it has been also been demonstrated that a
tumor vaccine called fibroblast activation protein-«
(FAP) gene-engineered tumor cell-derived exosome-like
nanovesicles (eNVs-FAP) can target both tumor paren-
chyma and the stromal cells (CAFs) which contribute
to tumor growth, metastasis, immunosuppression, and
drug resistance [142]. It was shown that the eNVs-FAP
vaccine effectively inhibited tumor growth in mouse
models of lung cancer. The vaccine achieved this by
inducing strong and specific immune responses medi-
ated by cytotoxic T lymphocytes (CTLs) against tumor
cells and FAP + CAFs [142].

Regulation epithelial-mesenchymal transition
(EMT) by TEXs in lung cancer

Epithelial-mesenchymal transition (EMT) is a critical
stage and important mechanism in the progression of
lung cancer metastasis [143]. In this stage, tumor cells
lose the ability to adhere to epithelial cells by reducing
the expression of epithelial markers like E-cadherin and
occludins and by overexpressing mesenchymal mark-
ers like vimentin, N-cadherin, and alpha-smooth muscle
actin (a-SMA), which gives them the ability to migrate
and invade [144]. Exosomes have been shown to have a
role in EMT in lung cancer [99, 145]. These exosomes
convey mesenchymal-induced signals from CAFs and
drive tumor cells toward a more aggressive phenotype.
High quantities of vimentin are found in TEXs isolated
from the serum of patients with advanced lung cancer,
and these TEXs can trigger EMT in recipient human
bronchial epithelial cells [145]. Exosome miRNAs have
an impact on lung cancer metastasis and carcinogen-
esis, and exosomes derived from lung cancer cell lines
have heightened miR-499a-5p levels [146]. In lung can-
cer, tumor-derived exosomal miR-499a-5p induces EMT
via the mammalian target of the rapamycin (mTOR)
signaling pathway and has both therapeutic and diag-
nostic potential [147]. Recent studies have shown that
mesenchymal stem cells (BMSCs) generated from bone
marrow are crucial to EMT, and exosomes originating
from BMSCs facilitate the transfer of miR-193a-3p and
miR-210-3p via activation of STAT3 signaling which,
in turn, promotes cancer cell infiltration and EMT
[148]. Exosomes containing the miRNA-210 are also
secreted by cancer-associated fibroblasts and are picked
up by lung cancer cells, where they induce cell migra-
tion, proliferation, invasion capabilities and EMT [149].
Finally, during TGF-1-mediated EMT, A549 cells release
exosomes that have altered cargo in terms of protein and
miRNA content. These exosomes trigger further pheno-
typic alterations through autocrine signaling [150]. These
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findings point towards the possibility that exosomal tran-
scription factors, mRNAs and miRNAs promote lung
cancer cell invasion, penetration and metastasis by acting
as mediators of EMT.

Modulation of angiogenesis by TEXs in lung TME
Angiogenesis, also known as neovascularization, refers to
the process of forming new blood vessels from existing
ones in the surrounding tissue. It plays a crucial role in
tumor growth and metastasis, as it provides the neces-
sary blood supply to tumors, delivering essential nutri-
ents and oxygen for their survival and growth [151].
Tumors, including cancerous ones, require a dedicated
blood supply in order to grow beyond a certain size. As
a tumor grows, it requires increased amounts of oxygen
and nutrients to support its metabolic needs. A delicate
equilibrium between pro- and anti-angiogenic factors
in the surrounding tissue closely controls the process of
angiogenesis. However, pro-angiogenic proteins, which
encourage the growth of new blood vessels, predominate
in malignancies [32, 152]. Endothelial cells are stimu-
lated to proliferate and migrate by pro-angiogenic factors
released by tumor cells and other cells in the tumor
milieu. These endothelial cells develop new blood ves-
sels that expand in the direction of the growth, feeding
it the nutrition and oxygen it requires [152]. The freshly
formed blood vessels integrate into the tumor’s structure
as it grows, supplying a steady flow of blood and enabling
tumor growth [32, 151]. The whole process is controlled
by several processes, including angiogenic molecules,
vascular endothelial growth factor (VEGF) and trans-
forming growth factor beta (TGF-P) [153]. It has been
shown that TEXs carry a variety of chemicals, including
miRNAs which, when ingested by endothelial cells, can
trigger neo-angiogenesis [32]. Exosomes produced by
lung cancer are more abundant in hypoxic environments
and are essential for angiogenesis [41, 154]. For instance,
one study demonstrated that lung cancer cells cultured in
hypoxic environments produce exosomal miR-23a, which
promotes angiogenesis by inhibiting prolyl hydroxylases
1 and 2 when internalized in endothelial cells, resulting
in an increase of the hypoxia-inducible factor-1. (HIF-1)
[83].

Additionally, these increase vascular permeability
and cancer cell migration by suppressing protein ZO-1
(Zonula occludens 1 protein), a tight junction pro-
tein [83]. An increase in angiogenesis is caused by the
accumulation of miR-210 in exosomes caused by the
overexpression of the tissue inhibitor of metallopro-
teinase-1 (TIMP-1) [155]. In addition to playing a role
as a target for exosomal miRNAs in the process of pro-
moting angiogenesis, the STAT3 signaling pathway also
enhances the release of miRNAs [156]. Due to their
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significant influence on angiogenesis, exosomal microR-
NAs have been researched as potential therapeutic tar-
gets in NSCLC. For instance, exosomal miR-497 has been
found to effectively decrease the production of VEGF-A,
thereby inhibiting tumor development, suggesting its
potential to be used as a therapeutic tool in the treatment
of lung cancer [157]. Taken together, these findings high-
light TEX’s significance in driving tumor angiogenesis.

Diagnostic, prognostic, and therapeutic
applications of TEXs in lung cancer

Despite substantial breakthroughs in detection and
therapy, lung cancer control remains a global concern.
This is due to a lack of accurate biomarkers leading to
ineffective early detection. Biomarkers are indications
of a certain physiological or biological state in the body
and are critical in medicine for diagnosing normal and
abnormal states and assessing therapy response because
they can be used to predict the likelihood of progres-
sion, recurrence and the efficacy of therapy in cancer
settings [35, 36, 70, 158]. Exosomes may successfully
replace a variety of physiologically important compo-
nents, including proteins and RNA transcripts, since
the cargo they transport preserves the properties of
their original cells. These payloads, present in various
physiological fluids, are shielded from oxidation during
transit by the exosomal membrane [53].

TEXs and their constituents in bio fluids, carrying the
same information as their parent cells, may enable the
creation of a distinct molecular profile of a tumor which
could aid in the development of non-invasive biomark-
ers for diagnosis, prognosis and drug resistance, which
could be vital in managing patients with lung cancer.
Accumulating evidence has demonstrated that analysis
of plasma TEXs provide a highly sensitive approach to
analyzing lung cancer, and exosomal cargoes that are
altered in the tumor can be used as biomarkers for diag-
nosing, predicting and determining the outcome of lung
cancer [41, 66, 159].

Tumor-derived exosomal proteins in lung cancer
TEX proteins are emerging and promising cancer bio-
markers [68, 160]. They are widely dispersed, have high
permeability making them easily accessible and are
shielded from degradation by the distinct lipid bilayer
[53, 161]. TEXs are also more likely to include specific
cancer-associated proteins than conventional tumor bio-
markers, which improves their ability to correctly predict
cancer development [161].

Several studies have researched the possibility of
employing a panel of exosomal proteins for identifying
lung cancer [7, 66, 111, 159, 162-166] (Table 2). Yamash-
ita et al. investigated the efficacy of assessing EGFR
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expression on exosomal membranes for lung cancer and
discovered considerably greater levels of exosomal EGFR
expression in cancer cases than in normal controls [166].
Similarly, Huang et al. found that EGFR was present in
the majority of exosomes obtained from lung cancer
biopsy samples but only in approximately 2% of samples
from chronic lung inflammation cases [111]. When these
exosomes were co-cultured with ThO cells, they gener-
ated regulatory T cells (Tregs) specific to tumor antigens,
capable of inhibiting tumor antigen-specific CD8+T
cells. This implies that exosomes containing EGFR may
play a role in promoting immunological tolerance in lung
cancer, which has important implications for immuno-
therapy approaches.

Sandfeld-Paulsen et al. investigated the diagnostic
accuracy of a set of membrane-attached exosomal pro-
teins in 336 lung cancer patients and 127 control par-
ticipants using an array that allows multiplex analysis of
several exosomal proteins [159]. They found that CD151,
CD171 and tetraspanin 8 were the most effective bio-
markers for distinguishing between those with and with-
out lung cancer, as well as differentiating between various
types of lung cancer histology [159]. Furthermore, they
discovered that exosomal proteins obtained from plasma
could potentially forecast the prognosis of NSCLC
patients in another study to phenotype exosomes from
plasma of NSCLC patients capturing 49 proteins [66].
The study reported a notable association between pla-
cental alkaline phosphatase (PLAP), ALG-2-interacting
protein X (ALIX), the CTA New York Esophageal Squa-
mous Cell Carcinoma-1(NY-ESO-1), and EGFR, with a
decreased overall survival rate emphasizing the potential
advantages of utilizing exosomal membrane-bound pro-
teins as robust prognostic biomarkers in NSCLC [66].

Another study identified potential lung cancer bio-
markers by profiling extracellular vesicle-derived pro-
teins in healthy individuals and cancer patients using
proteomic analysis and differential expression of arrays
of proteins [162]. Among these proteins, CD5L was iden-
tified as a promising biomarker with high accuracy for
diagnosing lung cancer and was also found to be associ-
ated with various lung cancer histologies. Urine exosomal
biomarkers were also found to assist NSCLC diagnosis
in a proteomic study by Li et al. [7]. They reported that
patients who were initially suspected of having lung can-
cer but were later found to be cancer-free had elevated
levels of leucine-rich alpha-2-glycoprotein (LRG1) in
urine-derived exosomes when compared to controls
indicating that LRG1 obtained from urine might be a
feasible non-invasive biomarker for diagnosing NSCLC
[7]. Another study by Feng Wu et al. demonstrated that
exosomes obtained from bronchoalveolar lavage (BAL)
fluid of both smokers and NSCLC patients contained
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higher levels of certain proteins, such as human leuko-
cyte antigens -class I (HLA-class I), B melanoma antigen
(BAGE), PD-L1, and annexin-A2, compared to healthy
individuals [165].

Furthermore, the study also revealed that the expres-
sion of exosomal miRNAs, mRNAs, and IncRNAs dif-
fered between smokers and NSCLC patients, indicating
that smoking might affect the exosome’s capacity to regu-
late molecular components within exosomes and could
be a contributing factor to the onset of lung cancer [165].
Further, Wang et al. reported that lipopolysaccharide-
binding protein (LBP) levels in exosomes obtained from
the serum of NSCLC patients were considerably higher
than in healthy individuals [164]. Notably, the expres-
sion of exosomal LBP was higher in patients with meta-
static NSCLC than those without metastasis, suggesting
exosomal LBP may serve as a potential biomarker for
metastasis and distinguish between patients with meta-
static and non-metastatic NSCLC [164]. Gao et al. found
that plasma-derived exosomes from NSCLC patients
expressed T-cell immunoglobulin and mucin domain 3
(Tim-3) and galectin-9 in much higher quantities than
those of healthy individuals (103 NSCLC patients and 56
healthy individuals) [163]. Moreover, they reported that
the exosomal expression of Tim-3 and galectin-9 exhib-
ited a positive correlation with various clinico-patho-
logical features such as patient age, tumor size, distant
metastasis, and cancer stage, suggesting them as poten-
tial biomarkers for NSCLC [163].

Tumor-derived exosomal miRNA in lung cancer
Exosomal miRNAs are very small non-coding RNA
molecules that have been linked to the etiology of lung
cancer [168]. Cancer cells release these miRNAs into
the extracellular region, where they are transported in
exosomes through the bloodstream. Exosomal miRNAs
can control gene expression by binding to target mRNA
molecules and either blocking or causing their degrada-
tion once they reach their target cells [169].

Several investigations have found that exosomal miR-
NAs play a role in lung cancer progression via a variety
of pathways [148, 157, 168, 169]. Exosomal miRNAs, for
example, have been shown to support angiogenesis, a
critical step in tumor development, by causing endothe-
lial cell proliferation and migration [33, 170]. Exosomal
miRNAs have also been linked to the control of vascular
permeability, which can promote cancer cell invasion and
spread [31, 33]. Furthermore, exosomal miRNAs have
the potential to be useful indicators for early lung cancer
detection. Most of these circulating exosomal miRNAs
have been evaluated as biomarkers, mainly in diagnosis
and prognosis. In most cases, the clinical utility does not
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rely on a specific miRNA but on a panel of multiple miR-
NAs [171].

In a recent study, Jin and colleagues explored the dis-
criminatory ability of TEX biomarkers between squa-
mous cell carcinoma and adenocarcinoma in patients
with initial-stage NSCLC by exosomal miRNA profiling
in plasma samples [172]. They reported a number of exo-
somal miRNAs, including those specific to adenocarci-
nomas which could be used as non-invasive biomarkers
for early NSCLC diagnosis. Another study by Wang et al.
demonstrated that a panel of four miRNAs (hsa-miR-
9-3p, hsa-miR-205-5p, hsa-miR-210-5p and hsa-miR-
1269a) detected in serum-derived exosomes might be
utilized to identify NSCLC patients [173]. These miRNAs
were more abundant in NSCLC patients than in healthy
people and could distinguish between the two groups,
and of the four miRNAs, miR-1269 displayed the high-
est discriminatory ability [173]. Cazzoli et al. examined
742 miRNAs in a study involving 30 individuals with lung
adeno-carcinomas, lung granulomas, and healthy smok-
ers. They discovered a diagnostic panel of miR-379, miR-
378a, miR-200b-5p, and miR-139-5p that may be used as
an indicator for the diagnosis of lung cancer [174].

Notably, lung cancer patients may also be differently
diagnosed by exosomal RNA profiling from pleural effu-
sions. Lin et al. conducted a study to investigate whether
analyzing the exosomal profile in pleural effusions could
help in the early detection of lung cancer [175]. They
analyzed the miRNA expression patterns in pleural effu-
sions from patients with lung cancer, pulmonary TB, and
pneumonia. They identified 27 miRNAs that were dif-
ferentially expressed between the study groups. Notably,
they found that two specific miRNAs, miR-205-5p and
miR-200b, were expressed at significantly higher levels
in the lung cancer samples compared to the pneumonia
samples suggesting that these miRNAs could be used as
potential markers to distinguish between lung cancer and
pneumonia [175].

Tamiya and colleagues conducted exosomal miRNA
profiling in patients with lung adenocarcinoma asso-
ciated with malignant pleural effusion and reported
increased levels of miR-182 and miR-210 [176]. These
microRNAs could potentially be utilized as a diagnostic
tool to distinguish lung adenocarcinoma pleural effusion
from benign pleural effusion. Moreover, Hydbring et al.
[177] suggested that microRNAs that are differentially
expressed, including those belonging to the miR-200
family, have greater diagnostic precision in individuals
with lung adenocarcinoma than those with pleural effu-
sions induced by noncancerous lung diseases.

Studying the prognostic capacity of miR-21 and miR-
4257 in a large cohort of 195 NSCLC patients and 30
healthy controls, Dejima et al. [178] found that, plasma
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levels of exosomal miR-21 and miR-4257 from NSCLC
patients were markedly upregulated in patients with
recurrence than those without recurrence and were asso-
ciated with a poorer prognosis and a shorter disease-free
life. Moreover, miR-21 was associated with clinical fac-
tors such as the size of the tumor and its stage of metas-
tasis to the nodule, while miR-4257 was associated with
histological type and TNM stage [178]. Another study
has reported elevated levels of exosomal miR-10b-5p,
miR-23b-3p, and miR-21-5p independently associated
with poor overall survival in NSCLC patients [179].
Additionally, circulating serum exosomal miR-20b-5p
and miR-3187-5p levels are significantly lower in patients
with early-stage NSCLC compared to healthy individuals
[180].

Moreover, Zhang and colleagues [181] revealed that the
downregulation of blood-derived exosomal let-7a-5p was
significantly linked to the advancement of lung adeno-
carcinoma and poor survival in individuals exposed to
dust at work. Another study reported that significantly
decreased levels of exosomal miR-382 in NSCLC patients
and was positively associated with poor clinical variables,
including overall survival [182]. Dong et al. [183] dem-
onstrated the serum-derived exosomal-eIF4E in NSCLC
individuals to be notably higher compared to healthy
individuals suggesting that augmented levels of exosomal
elF4E in NSCLC tissues were associated with advanced
TNM stage, distant metastasis and late-stage disease,
consequently leading to poor survival.

Yuwen et al. [184] investigated the impact of tumor-
derived exosomal miR-146a-5p levels on NSCLC chemo-
to cisplatin and the molecular process through which it
influences chemotherapy responsiveness. They observed
that NSCLC patients with advanced illness who had low
serum- derived exosomal miR-146a-5p levels were more
likely to recur than those with heightened levels, suggest-
ing that serum exosomal miR-146a-5p might be a useful
biomarker for predicting cisplatin effectiveness and mon-
itoring treatment resistance in NSCLC patients [184].
Furthermore, differentially expressed exosomal miRNAs
in serum have recently been identified as potentially use-
ful prediction indicators for EGFR mutations in NSCLC
[185]. They reported miR-1169 and miR-260 to be pos-
sible biomarkers which are able to discriminate between
initial-stage NSCLC caused by wild-type and mutant
EGEFR [181].

Tumor-derived exosomal long noncoding RNAs
(IncRNAs) in lung cancer

Long non-coding RNAs (IncRNAs) are a class of RNA
molecules that differs from protein-coding mRNAs in
that they do not encode proteins, and are transcribed
from DNA and can range in length from over 200
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nucleotides to more than 100,000 nucleotides, [186].
Despite being non-coding, IncRNAs play important reg-
ulatory roles in gene expression and can interact with
DNA, RNA, and proteins to modulate various cellular
processes [186]. They regulate important biological pro-
cesses such as cell differentiation, cell division and epige-
netic regulation [187]. Researchers have discovered that
IncRNAs are dysregulated and expressed abnormally in
various tumors, including lung cancer, and more recently,
that they influence tumor development, metastasis and
invasion in exosomes secreted by lung cancer cells [188].

One of the most intensively researched possible bio-
markers for detecting NSCLC is metastasis-associated
lung adenocarcinoma transcript 1(MALAT1), which
accelerates tumor migration and proliferation by sup-
pressing cell apoptosis shortening the cell cycle when
highly expressed in NSCLC patient serum [189]. A
recent study has demonstrated a substantial accumula-
tion of IncRNA- SOX2 overlapping transcript (IncRNA-
SOX20T) in exosomes obtained from the peripheral
blood of NSCLC patients with bone metastases [190].
Furthermore, patients displaying elevated levels of exo-
somal IncRNA-SOX20T exhibited significantly shorter
overall survival rates, suggesting it could be a promis-
ing target for the treatment of metastatic NSCLC [190].
Notably, IncRNA-SOX20T overlapping transcript and
ANRIL may be the ideal biomarkers for predicting the
prognosis of NSCLC because these have been found to
be elevated in tissues and serum samples, compared
to healthy controls and decreased levels are related to
greater overall survival rates [191].

Other potential markers of NSCLC metastasis include
six urinary exosomal-derived IncRNAs Inc-(SRY-11, Inc-
FRAT1-5, and Inc-RNASE13-1), which exhibited sig-
nificantly higher expression levels in NSCLC patients
compared to healthy individuals. Conversely, Inc-
ARL6IP6-4, Inc-RP11-80A15.1.1-2, and Inc-DGKQ-1
expression levels were considerably down-regulated in
NSCLC patients [67]. Also, exosomal linc01125, might
be a novel and reliable biomarker for diagnosing NSCLC,
predicting prognosis and assessing survival rates because
of its ability to distinguish NSCLC cases from disease-
free and tuberculosis patients and its association with
unfavorable overall survival [192].

It has been reported that NSCLC patients exhibit sig-
nificant upregulation of serum exosomal small nucleolar
RNA Host Gene 15 (IncRNA SNHG15) expression com-
pared to individuals with benign lung lesions or without
the disease. These upregulated expressions of IncRNA
small Nucleolar RNA Host Gene 15 (SNHG15) were
identified as an independent predictor of overall survival
and closely associated with the differentiation of NSCLC
patients across all stages compared to controls [193].
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Another study reported that NSCLC patients had signifi-
cantly elevated levels of IncRNAs-actin filament-associ-
ated protein 1 antisense RNA 1 (IncRNA AFAP1-AS1)
expression compared to individuals without the disease
[194]. More recently, exosomal LncRNA RP5-977B1 has
been found to be significantly elevated in NSCLC com-
pared to healthy controls [195]. In a validation study,
NSCLC patients showed higher levels of exosomal long
non-coding RNAs TGF-f induced LncRNA (TBILA) and
AGAP2 antisense RNA 1 (AGAP2-AS1) than healthy
individuals as well as a significant positive association
between the levels of these exosomal IncRNAs and lymph
node, tumor size, and TNM stage [196].

Despite the encouraging results from the studies on
exosomal-derived IncRNAs as possible candidate bio-
markers for lung cancer mentioned earlier, the majority
of research on IncRNAs is still in the preclinical phase,
and there is a lack of understanding about their mecha-
nism of action. Therefore, there is a pressing need for
more comprehensive studies on IncRNAs to enable the
effective development of cancer diagnosis and treatment
strategies.

TEXs in the targeted drug resistance therapy

of lung cancer

Drug resistance is a significant obstacle that hinders the
effectiveness of chemotherapy, radiotherapy, and targeted
treatment. Despite a strong initial response to these
therapies, most patients with NSCLC acquire drug resist-
ance within 9 to 12 months [197]. As a result, improv-
ing clinical outcomes for NSCLC patients require better
knowledge of the molecular processes behind treatment
resistance and the discovery of predictive biomarkers for
targeted therapy. Drug resistance develops when drug-
sensitive tumor cells undergo intracellular pathway alter-
ations or activate paracrine and autocrine pathways that
aid survival. In response to various treatments, these cells
also express a wide range of molecules [198]. Exosomes,
essential for cell-to-cell communication, have been asso-
ciated with developing drug resistance in cancer [199,
200]. Exosomal proteins have gained recognition as sig-
nificant mediators of drug resistance. Exosomes can pre-
cisely deliver functional P-glycoprotein to drug-sensitive
recipient cells. This transfer initiates signaling pathways
that are essential for the development of drug resistance
in these cells [201]. This phenomenon has been seen in
NSCLC, where cisplatin resistance has been noted as a
prevalent side effect of the intravenous administration of
this platinum-based DNA-damaging medication.

It has been demonstrated that hypoxia worsens drug
resistance in lung cancer cells by increasing the expres-
sion of pyruvate kinase isozymes M2 (PKM2) in NSCLC.
An upregulation had been observed in exosomes released
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by hypoxic cisplatin-resistant cells. Hypoxic conditions
contribute to drug resistance in lung cancer cells through
various mechanisms. Firstly, NSCLC cells increase their
glycolysis, producing metabolites that counteract the
reactive oxygen species triggered by cisplatin. Secondly,
hypoxia-induced changes in CAFs create an acidic
microenvironment that promotes NSCLC cell prolifera-
tion and resistance to cisplatin. These findings shed light
on the complex relationship between hypoxia, exosomes,
and the development of drug resistance in lung cancer
cells [202].

A growing body of evidence indicates that TEXs play a
role in drug resistance to EGFR- Tyrosine kinase inhibi-
tors (EGFR-TKIs) through the transfer of exosomal miR-
NAs [21, 203]. Exosomes released by EGFR-TKI-resistant
cells decrease the susceptibility of NSCLC cells to gefi-
tinib, and this resistance may be overcome by blocking
miR-21 [21]. Additionally, exosomes containing a sec-
ondary T790M mutation of EGFR have been found to
induce drug resistance in EGFR-TKI-sensitive cells and
are associated with increased expression of exosomal
miR-3648 and miR-522-3p [204]. Similarly, exosomal
miR-214 inhibition can overcome medication resistance
caused by miR-214 overexpression in gefitinib-resistant
cells [205].

TEXs have also been implicated in anaplastic lym-
phoma kinase (ALK)-TKI resistance, where exosomes
from resistant subclones induce resistance in originally
sensitive sub-clones through differential expression of
miRNAs and IncRNAs. A recent study has shown that
exosomes produced by lung cancer cells facilitate the
spread of cisplatin resistance to other cancer cells. This
resistance was associated with a decrease in the levels of
miR-100-5p, which consequently resulted in the down-
regulation of mTOR expression [206]. In addition, miR-
206 has a role in the control of cisplatin resistance as well
as the EMT process that occurs in human lung cancer
cells [207]. Specific RNA molecules in serum exosomes
can predict how well patients with NSCLC respond to
cisplatin therapy. These RNA molecules may serve as bio-
markers for detecting drug resistance in real-time. miR-
146a-5p expression steadily declines in both NSCLC cells
and the exosomes they release as drug resistance arises
in response to cisplatin therapy. The fundamental mech-
anism is that miR-146a-5p targets Atgl2 and inhibits
autophagy, increasing the susceptibility of NSCLC cells
to cisplatin [184].

Moreover, recent investigations have highlighted the
role of IncRNAs and exosome-mediated pathways in fos-
tering lung cancer treatment resistance. Tumor-derived
IncRNA H19 has been linked to gefitinib resistance [208].
According to a study by Yu et al., exosomes released by
NSCLC cells resistant to the EGFR-TKI icotinib showed
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increased expression of the oncogene MET in exosomes
isolated from metastatic NSCLC patients [209]. These
findings highlight the significance of TEXs in mediating
drug resistance in lung cancer. The possible mechanism
by which exosomes regulate the drug resistance in TME
in lung cancer is depicted in Fig. 3.

TEXs as promising drug delivery vehicles

and cancer vaccines in targeted lung cancer
therapy

Tumor-derived exosomes are getting recognition as
promising and very efficient delivery systems for drugs
used in the therapy of cancer. They are being explored
widely as a prospective alternative due to their inherent
role in intercellular communication, high biocompatibil-
ity, low immunogenicity, ability to remain in the blood
circulation for longer periods, biodegradable qualities,
and capacity to transverse through various biological bar-
riers [15, 210, 211]. Over the past few years, exosomes
have emerged as promising carriers for delivering drugs
in cancer treatment [167, 212-215]. A list of studies
employing therapeutic approaches that rely on exosome
targated drug/ and non-coding RNA delivery systems as
a modality for lung cancer therapy/ treatment is outlined
in Table 3. Engineered exosomes, derived primarily from
dendritic cells, mesenchymal stem cells, macrophages,
or cancer cells, are utilized for encapsulating tumor-tar-
geting therapeutic drugs such as RNAs or proteins [216].
These exosomes are chosen as they can exhibit tumor-
associated antigens and modulate immune responses
[217]. The process involves mixing chemotherapy drugs
or RNAs with exosomes, followed by encapsulation
through electroporation or sonication [217, 218].

A recent study has shown that engineered lung-specific
exosomes (231-Exo) loaded with miRNA-126 evaded
immune surveillance. They effectively hindered the
growth and movement of A549 lung cancer cells via dis-
ruption of phosphatase and tensin homolog/phosphati-
dylinositol 3-kinase/protein kinaseB (PTEN/PI3K/AKT)
signaling pathway. Furthermore, in a mouse model with
lung metastasis, the miRNA-231-Exo exhibited targeted
delivery to the lungs and notably suppressed the forma-
tion of lung metastases [227]. Soluble FMS-like tyros-
ine kinase 1 (sFlt-1) has been shown to have anti-tumor
effects via inhibiting angiogenesis in a number of cancer
models [232]. Engineered TEXs have been loaded with
sFlt-1 to take advantage of this therapeutic potential. This
therapeutic formulation has shown promising anti-tumor
action, resulting in increased tumor apoptosis and sup-
pression of tumor cell proliferation. Furthermore, it has
demonstrated superior efficacy in inhibiting pro-angio-
genic processes [232].
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Similarly, it has been shown that exosomes, coupled
with the anti-cancer drug paclitaxel and engineered to
incorporate the aminoethylanisamide-polyethylene gly-
col vector, can specifically target the sigma receptor that
is overexpressed in lung cancer cells. This innovative
approach led to a substantial accumulation of engineered
exosomal complexes within cancer cells after systemic
delivery and a better therapeutic outcome [224].

Developing a cancer vaccine represents an innovative
and forward-thinking scientific strategy to address global
health crises associated with cancer. Exosomes may be
used in cancer therapy because they include multivalent
surface portions from living cells that are impossible to
mimic in artificial nanoparticles [233]. Exosomes from
immune cells, cancer cells, and healthy cells have all been

compared for their efficacy in the treatment of cancer
[212, 234].

Exosomes have recently been found to have great
promise for cancer immunotherapy, positioning them as
a promising tool in developing effective cancer vaccines
and an optimal platform for advancing the development
of next-generation cancer vaccines [235]. Because they
contain natural tumor antigens that can efficiently acti-
vate APCs, TEXs, are being modified to create cancer
vaccines. Many studies have documented the beneficial
effects of TEX-based vaccination, including T-cell medi-
ated anti-tumor immune responses and a diminution
of tumors [70-72, 236, 237]. For instance, in melanoma
animal models, TEX vaccination has protected against
tumor development and inhibited lung metastasis. At
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the same time, in syngeneic mice, exosomes produced
by L1210 leukemia cells have restricted tumor growth
and given resistance to the tumor [237, 238]. Research
indicates that exosomes derived from DCs can trig-
ger T-cell-mediated immune responses against cancer,
and numerous clinical trials are currently underway to
explore the application of educated dendritic cells in
the treatment of lung cancer [235]. Recently, it has been
shown that the delivery of miRNA-30a through exosomes
has effectively hindered lung cancer metastasis [235].

A relatively untapped field of exosome research is the
study of exosomes generated from plants. Exosomes
may be able to exhibit anticancer effects and avoid prob-
lems from possible post-cancer therapies, according
to ongoing research in this area [212]. Moreover, TEXs
are unlikely to produce enough anti-tumor immunity
because they contribute to immunosuppression and have
low immunogenicity. To increase antigen immunogenic-
ity, a number of techniques are being developed to create
efficient and affordable treatments based on exosomes.
These include the use of electroporated siRNA, engineer-
ing TEXs to express both tumor-associated and patho-
genic antigens, affixing well-known immune boosters
like CpG DNA and TLR ligands, directly fusing TEXs
with antigens, and using external stimuli to increase TEX
release [55, 212, 239].

Though the TEX-based exosomal vaccine’s initial
results appear promising, novel strategies are needed to
make TEX-based cancer vaccines a reality. Future ther-
apies might be made possible by engineering TEXs to
activate their anti-tumor potential. Understanding the
signals inside TEX cargo and connecting them with clini-
cal data is now the biggest challenge in finding and veri-
fying tumor biomarkers. However, implementing TEXs
might completely transform how cancer is diagnosed and
treated.

Roles of TEXs immune checkpoint proteins in lung
cancer

Immune checkpoints are signaling molecules produced
by immunological cells and are thought to be guardians
of immune responses [58]. In lung cancer, these pathways
play a complex role in promoting and inhibiting the abil-
ity of the immune system to fight cancer. Over the past
several decades, a number of immune checkpoints have
been identified, and numerous studies have shown their
contribution to the development of tumors by enhanc-
ing anti-tumor immune responses in lung cancer [240].
The treatment of advanced NSCLC has been drastically
transformed by ICIs, which can be administered alone or
in conjunction with chemotherapy [241]. Recent research
has uncovered the expression of different immunologi-
cal checkpoint proteins, including programmed death
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ligand-1 (PD-L1), cytotoxic T-lymphocyte associated
protein 4 (CTLA-4), and TIM-3, in TEXs [242-244].
More and more studies suggest that exosomal immuno-
logical checkpoint proteins are involved in the regulation
of tumor immune evasion by a novel mechanism and
may serve as novel targets for cancer immunotherapy.
[245-247].

Tumor-derived PD-L1 and immunotherapy in lung
cancer

Programmed death-ligand 1 (PD-L1) is a type I trans-
membrane protein found primarily on the surface of
cancer cells. It can attach to the PD-1 receptor on T
cells, inhibiting T cell activation and supporting immu-
nological homeostasis [248]. The interaction of PD-L1
and PD-1 on T cells has been shown to inhibit T cell
activation, proliferation, and cytokine release, resulting
in a weakened immune response against cancer cells.
This immune checkpoint signaling pathway is critical
in tumor cell immune escape, allowing them to avoid
immunological detection and elimination by the host
immune system [249].

Tumor cells have elevated levels of PD-L1 expression
which can shield them from immune monitoring by
T cells by attaching to PD-1 on activated T cells [249].
When PD-L1 and PD-1 bind together, they can suppress
the activity of T cells, making it harder for the immune
system to attack cancer [250]. In addition to the cell sur-
face of many tumor cell types, PD-L1 is also found on
exosome surfaces called exosomal PD-L1 (exo-PD-L1)
[59]. An expanding body of evidence suggests that TEXs
with the PD-L1 protein on their surface play a role in
angiogenesis, tumor formation, infiltration, metastasis
and immune evasion [55]. Studies have confirmed that
the interplay between exo-PD-L1 and activated immune
cells drive a tumor’s immunosuppressive mechanism
[251-253]. Exo-PD-L1 is more robust and resistant to
proteolytic enzyme degradation and may also have more
potent immunomodulatory effects in the bloodstream
and TME [254]. PD-L1 is expressed in the TME by vari-
ous cell types, including macrophages, DCs, MDSCs
and tumor cells and exo PD-L1 may also originate from
these cell types and may be transmitted to different cell
types, such as tumor cells, macrophages and DCs [248,
250]. In general, the actions of exo-PD-L1 regulate T cells
and control other immune cells in order to produce the
milieu of the tumor immuno-suppressive and prevent an
anti-tumor immune response. In Fig. 4 the cellular cross-
talk driven by TEXs and exosomal-PD-L1 in the TME
involving its transfer and upregulation is illustrated.

Clinically, blocking PD-L1 with an antibody activates
the anti-tumor immune response, resulting in prolonged
remission in certain cancer patients [56, 249]. However,
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of exo-PD-L1 which mediates functional PD-L1 transfer between cells and induces systemic immunosuppression microenvironments to facilitate
metastasis. Tumor-derived exosomes (TEXs) are responsible for inducing PD-L1 expression in immune cells. This transpires through the upregulation
of AKT/PTEN, MAPK and JAK/STAT signaling by regulatory proteins and microRNA. Cancer-associated fibroblasts (CAF) also express PD-L1

in response to interferon-y (IFN-y), a key activator of macrophages, natural killer cells and neutrophils. TEXs cause fibroblast activation (A), which
leads to the secretion of soluble compounds that enhance PD-L1 expression in tumors and cause epithelial to mesenchymal transition phenotype
(B). Similar to this, TEXs induce the PD-L1 to collaborate via vascular endothelial growth factor (VGEF) and alter angiogenesis (C) to sustain TME. The
immune evasion is facilitated by pro-tumorigenic T regulatory (T reg) (D). Exosomal PD-L1 inhibits T cell activation by stimulating the production

of CD8+ cytotoxic T lymphocytes, often known as CTLs. These lymphocytes target tumor cells and trigger apoptosis through their cytotoxic
activities, a cytotoxic effect of CD8+T lymphocytes which can be inhibited by exo-PD-L1. High concentrations of PD-L1 in exosomes can lead

to apoptosis in activated CD8+T lymphocytes. Figure created with BioRender.com

the majority of individuals had adaptive resistance [56, to address the problem of antibody resistance shown in
255]. Notably, utilizing anti-PD-L1 antibodies to block existing techniques.
exo-PD-L1 may enhance anti-tumor immune response Until recently, limited research has been conducted
and, more effectively, reduce tumor development. As a  on the potential role of PD-L1 expression in TEXs as a
result, exo-PD-L1 offers a unique therapeutic approach  biomarker for cancer patients who receive ICIs. Sev-

eral investigations [60, 62, 163, 256—258] have reported
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a substantial increase in the expression of immunologi-
cal checkpoint proteins in TEXs in lung cancer patients.
Zang et al. investigated the correlation between exo-
PD-L1 and immunohistochemistry (IHC) PD-L1 status
and the pathological characteristics of NSCLC patients
undergoing anti-PD-L1 therapy [259]. They reported a
correlation between exo-PD-L1 levels and IHC PD-L1
status and exo-PD-L1 levels and lymph node metasta-
sis, indicating that their identification might forecast the
effectiveness of ICIs treatment in lung cancer patients
[259]. A further study analyzing the clinical importance
of PD-L1 expression in serum-derived exosomes from
a sample of 85 patients with NSCLC found exoPD-L1
expression associated with tumor size, lymph node sta-
tus, metastasis and NSCLC progression [256]. Another
study exploring the prognostic significance of exoPD-L1
and CD28 in NSCLC patients receiving ICIs demon-
strated that patients with elevated levels of exo-PD-L1
and decreased levels of CD28 had shorter progression-
free survivals implying that aggregate baseline levels of
exoPD-L1 and CD28 could be of predictive significance
of anti-PD1 therapy [57].

Although recent research has discovered that exo-PD-
L1 is associated with lung cancer prognosis, there are still
some caveats. First, it is difficult to discern between the
pharmacologic effect of the PD-1 inhibitor and the effi-
cacy of autoimmunity during PD-1 therapy. Second, the
bulk of studies focus on a retrospective cohort with a
relatively small sample size and is therefore prospective;
large-scale clinical trials are still necessitated to corrobo-
rate these results. Third, a clear methodology for dealing
with exo-PD-L1 due to tumor cell heterogeneity is yet to
be established.

Nevertheless, Exo-PD-L1 is a broader paradigm inno-
vation with promising therapeutic and further research
applications. Exo-PD-L1 suppresses immunity, even
though the precise mechanism by which it does so is
poorly understood. Future research should focus on the
assays determining how exo-PD-L1 affects different pop-
ulations of immune cells (such as NK cells, DCs, mac-
rophages, Tregs and B cells), the mechanism behind the
impact of induced exo-PD-L1 expression on cancer pro-
gression and whether patients develop an autoimmune
response to exo-PD-L1. The complexity of the tumor-
immune microenvironment implies that more complete
models should be utilized in assessing immunotherapy
instead of the traditional method of pinpointing genes to
identify an appropriate biomarker.
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Future perspectives, challenges, and conclusion
The current review highlights TME immunomodulatory
properties of exosomes produced from tumor cells. It is
clear that, TEXs are important intercellular communica-
tion mediators in healthy and pathological conditions.
They alter oncogenic pathways in cancer cells and play a
significant mechanistic role in the tumor microenviron-
ment, all of which have been shown to promote tumor
growth, metastasis, and resistance to treatment of lung
cancer.

Due to their nonoscale dimensions and capacity for fer-
rying molecules into certain recipient cells, TEXs have
been proposed as potential drug delivery systems, which
makes them especially intriguing for biological applica-
tions like biomarker molecules and anticancer vaccines.

Exosomes can be used as non-invasive biomarkers
to complement or supplement standard biopsy since
the tumor exosomal payload contains chemicals from
the releasing cells and can be found in the blood. Inves-
tigating the intricate make-up of exosomes can result
in precise, swift medical interventions, screening and
detecting initial-stage lung cancer for more favorable
prognoses and developing a multianalyte strategy with
the potential to offer dynamic insight into the tumor
microenvironment.

Nevertheless, exosome analysis has yet to be incorpo-
rated into clinical recommendations due to numerous
hurdles yet to be overcome before exosome-based diag-
nosis/prognosis and delivery systems can be applied in
clinical settings. The primary and most significant obsta-
cle is related to the isolation and comprehensive charac-
terization of exosomes. The lack of uniform procedures
for isolating exosomes, appropriate quality controls, and
storage methods have hindered the development of med-
ical-grade exosome manufacturing and limited analysis
in standard clinical laboratories. Secondly, exosome anal-
ysis would benefit from economical and simple-to-use
specialized technology. Exosome heterogeneity is inti-
mately associated with the various activities of exosome
subgroups with diverse molecular profiles. As a result,
single-particle assays which can discriminate between
exosome biological origins, size, content and functional
influence on recipient cells, could be used to identify
exosomes.

Furthermore, considerable evidence from in vitro and
in vivo animal studies support the involvement of TEX
in regulating an immunosuppressive milieu for tumor
development. Nevertheless, the relatively short time
frame of these and other preclinical investigations may
not reflect the dynamic process of cancer cell immuno-
genicity determined by the phenotype of the encompass-
ing microenvironment and throughout which additional
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immune evasion mechanisms may evolve. This problem
is exacerbated by the paucity of clinical trial research
evaluating the therapeutic potential of TEXs in lung can-
cer and the fact that most studies are retrospective with
small cohorts. Consequently, additional prospective stud-
ies with larger populations are required to prove TEX use
as a liquid biopsy and credible alternative to tumor tissue
biopsy.

Thereby, the selection of exosome indicators which
best correspond with clinical state from among various
studies are complicated. Whenever these challenges
are resolved, exosomes will most likely play an impor-
tant role in lung cancer treatment. To do so, further
translational research and clinical trials must be con-
ducted before incorporating exosomes into lung cancer
treatment.

Overall, the available data from preclinical analyses
of TEX molecular cargo and their effects on different
immune cells support the critical role of TEX in estab-
lishing an immunomodulatory microenvironment,
which may influence various cancer activities such as
invasion, metastasis, EMT and angiogenesis. Notwith-
standing the drawbacks and difficulties, a thorough
comprehension of the TEXs molecular profile and
complex interactions with immune cells in a tumor
microenvironment may result in efficient, customized
immunotherapy which enhances therapeutic outcomes.

Exosome administration of therapeutic drugs is a
revolutionary strategy with a bright future in medi-
cine because of the distinct biological properties of
exosomes. Medical care for lung cancer should be accu-
rate and individualized, and we propose that TEXs may
be altered to improve clinical outcomes and enhance
clinical lung cancer care. More research efforts at vari-
ous levels are required to accomplish this.

Abbreviation
EMT Epithelial-mesenchymal transition

SCLC Small-cell lung cancer

NSCLC Non-small cell lung cancer

TME Tumor microenvironment

ICls Immune checkpoint inhibitors
EVs Extracellular vesicle

MVBs Multivesicular bodies

TEXs Tumor-derived exosomes

ESCRT Endosomal sorting complex required for transport
ECM Extracellular matrix

CAFs Cancer-associated fibroblasts
NKs Natural killer cells

DCs Dendritic cells

MDSCs Myeloid-derived suppressor cells
TNF Tumor necrosis factor-a
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