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Abstract 

Background Immune‑checkpoint inhibitors (ICI) can lead to immune‑related adverse events (irAEs) in a significant 
proportion of patients. The mechanisms underlying irAEs development are mostly unknown and might involve multi‑
ple immune effectors, such as T cells, B cells and autoantibodies (AutoAb).

Methods We used custom autoantigen (AutoAg) microarrays to profile AutoAb related to irAEs in patients receiving 
ICI. Plasma was collected before and after ICI from cancer patients participating in two clinical trials (NCT03686202, 
NCT02644369). A one‑time collection was obtained from healthy controls for comparison. Custom arrays with 162 
autoAg were used to detect IgG and IgM reactivities. Differences of median fluorescent intensity (MFI) were analyzed 
with Wilcoxon sign rank test and Kruskal–Wallis test. MFI 500 was used as threshold to define autoAb reactivity.

Results A total of 114 patients and 14 healthy controls were included in this study. irAEs of grade (G) ≥ 2 occurred 
in 37/114 patients (32%). We observed a greater number of IgG and IgM reactivities in pre‑ICI collections from patients 
versus healthy controls (62 vs 32 p < 0.001). Patients experiencing irAEs G ≥ 2 demonstrated pre‑ICI IgG reactivity 
to a greater number of AutoAg than patients who did not develop irAEs (39 vs 33 p = 0.040). We observed post‑treat‑
ment increase of IgM reactivities in subjects experiencing irAEs G ≥ 2 (29 vs 35, p = 0.021) and a decrease of IgG levels 
after steroids (38 vs 28, p = 0.009).

Conclusions Overall, these results support the potential role of autoAb in irAEs etiology and evolution. A prospective 
study is ongoing to validate our findings (NCT04107311).
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Background
Immune checkpoint inhibitors (ICI) targeting the PD1/
PD-L1 and CTLA4 pathways have rapidly become one 
of the main treatment option for cancer patients [1]. In 
a significant proportion of recipients, ICI can lead to life-
threatening or disabling immune-related adverse events 
(irAEs) [2–4]. As compared to side effects from cytotoxic 
treatments, the type, severity and the timing of irAEs is 
less predictable [5]. The majority of irAEs occur within 
the first few months of treatment [6]. However, it is not 
uncommon to observe delayed and long lasting toxicities 
that fluctuate over time [7]. Although some organs such 
as skin, thyroid and the gastrointestinal tract are more 
frequently involved, all body systems can be affected by 
immune-mediated toxicity [6]. While endocrine toxici-
ties can be managed with hormone replacement, irAEs 
involving other organs often require immunosuppressive 
therapies, ranging from systemic steroids to biological 
agents [7]. Importantly, irAEs can result in death in up to 
1.3% of patients [7]. A deeper understanding the etiology 
of irAEs and the identification of reliable predictive bio-
markers of toxicity are unmet clinical needs to appropri-
ately implement novel therapies and reduce morbidity in 
cancer patients [8, 9].

The correlation between clinical benefit from ICI and 
immune-mediated toxicities may be linked to T cell acti-
vation [10–15]. The observation of organ-infiltrating 
T-cell during irAEs including myocarditis [16], colitis 
[17], nephritis [18], pneumonitis [19] and sicca syndrome 
[20] supports this hypothesis. The antitumor activity of 
ICI however, does not solely rely on T lymphocytes and 
can be deeply influenced by other elements of the tumor 
microenvironment [21]. Similarly, irAEs might be the 
result of a complex network of interactions between 
tumors, healthy cells and multiple immune system 
effectors [5, 22–24]. Several reports indicate that ICI-
induced de-regulation of B-cells and altered production 
of autoantibodies (AutoAb) may contribute to the onset 
of irAEs [25–34]. The ability to detect AutoAb in patients 
at risk to develop irAEs even prior ICI exposure has been 
explored in multiple studies [26, 28, 35–41]. While sev-
eral studies support the use of pre-ICI anti-thyroid anti-
bodies to predict the risk of thyroiditis [42, 43], no clear 
correlation has been identified between other types of 
tissue specific AutoAb and organ toxicity.

Our group has developed a large, customized panel for 
AutoAb profiling to enable the simultaneous detection of 
reactivity against multiple tissue-specific antigens [44]. 
In the current study, we used the customized AutoAb 
array to interrogate the levels of AutoAb at baseline and 
throughout the course of ICI therapy in cancer patients 
who developed irAEs versus patients who did not experi-
ence immune-mediated toxicities.

Methods
Study population
Key eligibility criteria for this study included a diagnosis 
of solid tumor and history of treatment with an anti-PD1 
based regimen. We identified a cohort of 114 patients 
with metastatic solid cancers who received treatment 
with ICI in two clinical trials (INSPIRE, NCT02644369 
and MET4-IO, NCT03686202) [45]. INSPIRE was a 
phase 2 study investigating novel immune biomarkers in 
patients with solid tumors receiving pembrolizumab [46, 
47] while MET4-IO evaluated an orally-delivered micro-
biome intervention in cancer patients receiving ICI [48, 
49]. Both were investigator-initiated studies, approved 
by the Princess Margaret Cancer Centre Research Eth-
ics Board (#18–5950 and 15–9828). Samples obtained 
from the participants were used for this correlative study 
without interfering with the primary objectives of the 
two clinical trials. Plasma samples obtained from patients 
before and after ICI were retrospectively analyzed. Col-
lection time points in the MET4-IO study included base-
line (within 14 days before the start of ICI), 3–4 weeks, 
6–8 weeks, 24 weeks and at the end of treatment, while 
time-points for the patients enrolled in the INSPIRE trial 
included baseline (within 10  days from the start of ICI) 
and 6 weeks (cycle 3). Plasma samples collected from 14 
healthy controls at a single time point were used for com-
parison. Treatment emergent adverse events with poten-
tial immune related etiology were prospectively recorded 
for all the patients and graded according to the Common 
Terminology Criteria for Adverse Events (CTCAE), ver-
sion 5.0. For the purpose of this study, we considered 
irAEs of grade (G) ≥ 2 requiring medical intervention 
including steroids or other immunosuppressive agents or 
hormone replacement. Information regarding pharmaco-
logical interventions for the treatment of irAEs, including 
the type, dose and duration of treatment were collected 
for all the participants.

AutoAb detection and measurement with antigen 
microarray
A total of 162 antigens, customized based on tissues or 
organs most frequently affected by irAEs were selected (a 
list of the antigens used for this study is provided in Sup-
plementary Table 1). The antigens included in the panel 
are associated with multiple autoimmune disorders and 
have been used to screen for autoantibodies in a variety 
of conditions such as heart failure/heart transplantation 
[44, 50], kidney transplantation [51], liver transplantation 
[52], lung transplantation [53], systemic autoimmune 
rheumatic diseases [54], and post-covid vaccination [55]. 
Antigens were diluted in PBS to 0.2  mg/ml and subse-
quently stored at -80  °C. Customized antigen microar-
rays were generated as described previously [56, 57]. 
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Briefly, antigens were spotted in duplicate onto nitro-
cellulose coated slides (GVS, Sanford, ME, USA) using 
a VersArray Chipwriter Pro (Virtek, Waterloo, Canada) 
with solid pins (Arrayit, Sunnyvale, CA, USA). Slides 
were blocked overnight in blocking buffer (PBS with 
0.1% Tween and 5% FBS). The slides were then probed 
with human serum (diluted 1:100) in blocking buffer for 
one hour at 4  °C. After washing, the slides were probed 
with a Cy3-labelled goat anti-human IgG Fc antibody 
(Jackson ImmunoResearch, Westgrove, PA, USA) and an 
Alexa Fluor 647-labelled goat anti-human IgM antibody 
(Jackson ImmunoResearch) for 45 min at 4  °C in block-
ing buffer. After additional washing, the slides were dried 
by centrifugation. Fluorescence was quantified using an 
Axon 4200A scanner (Molecular Devices, Sunnyvale, 
CA). Median fluorescence intensity (MFI) on both the 
IgG and IgM channels was calculated for each antigen by 
subtracting the local background fluorescence and then 
averaging duplicate features.

AutoAb detection and measurement by enzyme‑linked 
immunosorbent assay (ELISA)
The concentrations of IgM and IgG antibodies in plasma 
samples were measured by commercial ELISA kits (Inv-
itrogen; Thermo Fisher Scientific, Inc., Waltham, MA, 
USA) according to manufacturer protocol. Briefly, 
96-well plates were coated with anti-human IgM or IgG 
monoclonal antibodies overnight at 4 °C. After blocking, 
the plates were incubated with plasma samples (diluted 
10,000-fold and 500,000-fold for IgM and IgG assays, 
respectively) and appropriate standards at room tempera-
ture for 2 h, followed by incubation with HRP-conjugated 
antibody at room temperature for 1  h. Tetramethylben-
zidine substrate solution was then added to each well 
to incubate in the dark for 15 min at room temperature 
before the addition of stop solution (2N H2SO4). All 
samples were run in duplicate. Finally, absorbance at 
450 nm was detected by a plate reader to calculate IgM 
and IgG concentrations via standard curve OD values.

Statistical analysis
Mann–Whitney U test and Fisher’s exact test or the 
Chi-squared test were used to compare continuous 
and categorical variables, respectively, across patients 
with and without irAEs G ≥ 2. The assessment of dif-
ferences in IgG and IgM distribution incorporated the 
Benjamini–Hochberg correction for multiple compari-
sons. Receiver operating characteristics (ROC) analysis 
was used to determine the optimal cutoff for IgG and 
IgM MFI to differentiate patients with and without 
irAEs G ≥ 2. The optimal cutoff was selected using the 
Youden index. AutoAb with MFI greater than the opti-
mal cutoff per individual, as well as greater than 500, 

were compared between healthy controls and patients 
with and without irAEs G ≥ 2 using the Kruskal–Wal-
lis test. Amongst patients with irAEs G ≥ 2, change in 
MFI > optimal cutoff from screening to toxicity, and 
change from toxicity to steroid use were modelled 
using the Wilcoxon signed-rank test. The analysis was 
repeated with patients without irAEs to evaluate change 
from screening to next collection. To assess cumula-
tive incidence of irAEs G ≥ 2 by MFI group, time to 
irAEs G ≥ 2 was calculated as the number of months 
between first cycle and date of irAEs G ≥ 2. Patients 
without irAEs G ≥ 2 were censored at date of last follow 
up. Death was considered a competing risk. For each 
group, patients were categorized into “high” vs. “low” 
groups based on the median number of AutoAb above 
the selected cutoff. Differences in the cumulative inci-
dence by group were assessed using Gray’s test. Patients 
were stratified by age group (≤ 45 vs. > 45, ≤ 50 vs. > 50 
and ≤ 60 vs. 60 years) and differences in AutoAb distri-
bution were assessed using the Mann–Whitney U test.

Results
Patients’ characteristics
A total of 14 healthy controls and 114 cancer patients 
were included in this analysis. Clinical and treatment 
characteristics of the study population are described 
in Table  1. The median age of the healthy controls 
was 35 years, and the majority were female (64%). The 
median age of the patients was 61 years and 51% were 
male. Thirty-seven patients (32%) developed irAEs 
G ≥ 2. The type of therapy received (anti-PD1 with or 
without anti-CTLA4 antibodies), the type of tumor, 
the number of prior lines and the sex of the patients 
were significantly associated with the risk of devel-
oping irAEs. A greater proportion of irAEs G ≥ 2 was 
observed in patients receiving anti-PD1 in combina-
tion with anti-CTLA4 agents (24% vs 4%, p = 0.0018). 
As compared with other tumor types, patients with 
melanoma had a higher proportion of irAEs G ≥ 2 
(43% vs 12%, p = 0.022) and greater proportion of 
irAEs G ≥ 2 occurred in patients who received immu-
notherapy as their first line of anticancer treatment as 
compared to those who had one or more prior lines 
of treatment (51% vs 18%, p = 0.012). A higher risk of 
irAEs G ≥ 2 was observed in male vs female (41% vs 
23%, p = 0.017). The association between tumor type, 
number of prior lines and sex of the patients and the 
probability to develop irAEs was confirmed after 
adjusting for the type of treatment received. Patients 
who experienced irAEs G ≥ 2 were older; however, 
this difference was not significant after adjusting 
for treatment type (65 vs 59  years, p = 0.07). Eight 
patients had a past history of autoimmune disorders 
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(3 hypothyroidism, 1 Hashimoto syndrome, 1 pso-
riasis, 1 rheumatoid arthritis, 1 diabetes mellitus, 1 
Schoenlein-Henoch purpura). No significant associa-
tion between prior autoimmune conditions and devel-
opment of irAEs G ≥ 2 was observed in this cohort 
(p = 0.90). We observed 18 different types of irAEs 
(Supplementary Fig. 1). The most frequently observed 
were hypothyroidism (13 patients, 11%), pneumoni-
tis (10 patients, 9%), colitis/diarrhea (7 patients, 6%), 
skin toxicity (7 patients, 6%), hepatitis (5 patients, 4%), 
infusion reaction (2 patients, 2%), myocarditis/tro-
ponin increase (2 patients, 2%) and pancreatitis/lipase 
increase (2 patients, 2%). In 4/13 cases (31%) hypothy-
roidism was preceded by subclinical hyperthyroidism 
detected with routine blood tests. Nineteen patients 
(17%) developed more than one irAE G ≥ 2.

Cancer patients had a greater number of IgG and IgM 
reactivities before ICI administration than healthy controls
Autoimmune reactivity between patients with and with-
out irAEs G ≥ 2 and healthy controls was compared 
using an MFI > 500 as a threshold. This level was previ-
ously identified as the threshold for signal identification 
by ELISA [44]. We evaluated both IgG and IgM AutoAb 
with MFI > or ≤ 500 in plasma samples collected from 
114 cancer patients before ICI administration and from 
14 healthy controls and assessed differences using the 
Mann–Whitney U test. A statistically significant differ-
ence in AutoAb reactivities with MFI > 500 was observed 
in samples collected from the healthy controls (median 
32, [IQR 29–37.5]) versus AutoAb with MFI > 500 sam-
ples collected from cancer patients before the start of 
immunotherapy (median 62; [IQR 50–90]; p < 0.001). 

Table 1 Demographic and treatment characteristics

HNSCC head and neck squamous cell cancer, irAEs immune-related adverse events, NA not applicable, TNBC triple negative breast cancer
* P-values from Cochran-Mantel–Haenszel test stratified by monotherapy (anti-PD1 alone) vs. combination therapy (anti-PD1 + anti-CTLA4) for categorical 
characteristics, and from logistic regression models adjusting for mono vs. combination therapy for continuous characteristics

Covariate All patients Patients without irAEs 
G ≥ 2

Patients with irAES 
G ≥ 2

Healthy Controls p-value*

Total 114 77 37 14

Median Age 61 (21–81) 59 (21–81) 65 (24–81) 31 (18–58) 0.070

Sex
 Male 58 (51) 34 (44) 24 (65) 5 (36) 0.017
 Female 56 (49) 43 (56) 13 (35) 9 (64)

History of prior autoimmune disease
 Yes 8 (7) 5 (6) 3 (8) NA 0.90

 No 106 (93) 72 (94) 34 (92) NA

Type of immunotherapy
 Anti‑PD1 102 (89) 74 (96) 28 (76) NA

 Anti‑PD1 +  Anti‑CTLA4 12 (11) 3 (4) 9 (24) NA

Tumor type 0.022
 HNSCC 33 (29) 20 (26) 13 (35) NA

 Melanoma 25 (22) 9 (12) 16 (43) NA

 TNBC 22 (19) 21 (27) 1 (3) NA

 Others 34 (30) 27 (35) 7 (19) NA

N of prior lines 0.012
 0 33 (29) 13 (17) 19 (51) NA

 1 38 (33) 26 (34) 14 (38) NA

 2 25 (22) 20 (26) 4 (11) NA

 ≥ 3 18 (16) 18 (24) 0 (0) NA

Prior Immunotherapy 0.42

 No 109 (96) 74 (96) 34 (92) NA

 Yes 5 (4) 3 (4) 3 (8) NA

Study 0.039
 INSPIRE 84 (74) 65 (84) 19 (51) NA

 MET4 30 (26) 12 (16) 18 (49) NA
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The median number of IgM reactivities in samples from 
healthy controls was 11.5 (IQR 9–14) while in cancer 
patients was 25 (IQR 15–41; p < 0.001). The median num-
ber of IgG reactivities in healthy controls was 23 (IQR 
18–26) while in cancer patients was 34.5 (IQR 29–45) 
(p < 0.001) (Fig.  1). The healthy control’s median age 
was lower as compared to patients (31 vs 61  years, see 
Table  1). To evaluate the potential impact of this vari-
able we divided the patients into two groups according to 
their age and compared IgG and IgM reactivities before 
ICI exposure in the two groups. Multiple thresholds 
were explored. The only significant difference observed 
was between patients ≤ 50 years vs > 50 years. Using this 

threshold, a lower median number of IgM and IgG with 
MFI > 500 was observed in the elderly population (60 vs 
73, p = 0.04, see Supplementary Table 2).

 Patients who develop G ≥ 2 irAEs have higher number 
of AutoAb reactivities at baseline
We compared the number of IgG and IgM reactivities 
with MFI > 500 in plasma collected before ICI adminis-
tration from patients who subsequently developed irAEs 
G ≥ 2 versus those who did not using the Mann–Whit-
ney U test. Samples from 37/114 patients (32%), who 
developed irAEs and 77/114 patients (68%) who did not 
develop irAEs were available for this analysis. Patients 

Fig. 1 Comparison of AutoAbs in pre‑ICI collections from patients with and without irAEs G ≥ 2 and in healthy controls using different cut‑offs. 
A cut‑off of MFI 500 (circled in green) was initially selected as this represent the value at which we expect to observe reactivity with the ELISA test. 
Optimal cut‑offs identified with ROC analysis for different classes of AutoAbs are circled in red
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who experienced irAEs G ≥ 2 had a median of 69 (IQR 
54–96) autoAg reactivities in their pre-ICI collection 
while the median number in patients who did not develop 
irAEs G ≥ 2 was 59 (IQR 49–84) (p = 0.06). We observed 
a statistically significantly higher number of reactive IgG 
in plasma collected from patients who developed irAEs 
(median 39, IQR 32–52) than in samples from patients 
who did not develop irAEs G ≥ 2 (median 33, IQR 28–43, 
p = 0.04). This difference was confirmed in the subgroup 
of patients who received anti-PD1 single agent (median 
33 [IQR 27–42] vs 38 [IQR 32–53], p = 0.04) but not in 
those who received the combination with anti-CTLA-4 
(median 50 [IQR 40–52] vs 39 [IQR 33–44] p = 0.64). 
No differences in the number of IgM reactivities were 
observed in plasma samples collected before the start of 
ICI from patients who did develop irAEs G ≥ 2 (median 
26, IQR 16–43) and those who did not experience irAEs 
G ≥ 2 (median 25, IQR 15–40) (p = 0.57).

Beside to using the a priori selected MFI threshold of 
500, ROC analysis was performed to identify additional 
thresholds for IgG and IgM reactivity, to further explore 
whether there was a difference in pre-ICI IgM and IgG 
levels in patients with vs without irAEs G ≥ 2. Cut-offs 
ranging from 100 to 1500 (with interval width of 25) were 
considered. The selected cutoff for IgM and IgG, which 
maximized the differences between the two groups of 
patients, was found to be MFI 950. ROC analyses were 
conducted separately for IgG alone and IgM alone. The 
optimal cut-off for IgG alone was identified as MFI 200, 
and for IgM alone was identified as MFI 1500. Differ-
ences in elevated AutoAb between healthy controls and 
cancer patients with and without irAEs G ≥ 2 using dif-
ferent thresholds are reported in Fig. 1.

Patients with a greater number of IgG reactivities 
at baseline are at higher risk to develop irAEs
We used the cut-offs identified in the prior analysis to 
divide the patients into “high” and “low” groups based on 
the number of AutoAb reactivities per patient detected 
in their pre-ICI collection. For total antibody reactivi-
ties as well as IgG reactivities at both thresholds, the 
“high” group had greater incidence of irAEs than the 
“low” group (Fig.  2A-B). No differences were observed 
in patients with “high” vs “low” IgM reactivity using MFI 
500 or 1500 as cut-off (Fig. 2C).

Patients who develop irAEs G ≥ 2 have an increase of IgM 
reactivities after ICI
Twenty-four of the 37 patients who developed irAEs 
(65%) had available plasma samples collected after ICI 
administration, within 8  weeks from the development 
of irAEs (median 21  days, range from -13 to 55  days 
after irAEs diagnosis) and prior to the start of any 

immunosuppressive therapy. The Wilcoxon signed-rank 
test was used to evaluate changes in samples. Using MFI 
500 as threshold, the median number of total AutoAg 
reactivities before ICI initiation in this group was 78 
while a median of 86 reactivities were detected in the 
post-ICI collection (p = 0.030) (Fig.  3). A significant 
increase in post-ICI samples was confirmed for IgM 
reactivities (median 35 vs 29, p = 0.021) while the num-
ber of IgG reactivities did not change (median 39.5 vs 
39, p = 0.17). No significant changes were observed in 
the number of AutoAb reactivities pre- and post-ICI in 
patients who did not develop G ≥ 2 irAEs (median 60 vs 
58, p = 0.12 Supplementary Fig. 2). The absence of signifi-
cant difference was confirmed for IgM (24 vs 23, p = 0.72) 
while post-treatment samples had a higher level of IgG 
(median 37 vs 33, p = 0.006). Differences in the level of 
AutoAg reactivities from baseline to the first post ICI 
collection or to the closest collection to irAEs develop-
ment, separated by IgG and IgM are reported in Supple-
mentary Fig. 3.

Patients who receive immuno‑suppressive medications 
have a decrease of the number of IgG reactivities
We evaluated changes in the number of AutoAg reac-
tivities in patients who received systemic immune sup-
pressive agents to treat irAEs G ≥ 2 using the Wilcoxon 
signed-rank test. Nine of the 24 patients (37.5%) with 
available plasma collection within 8  weeks from the 
onset of irAEs had also available samples obtained after 
the start of immunosuppressive treatment. We observed 
a decrease in reactivities after immune suppression 
(median number of IgG and IgM with MFI > 500 54 post 
vs 79 pre-immune suppression p = 0.097). The changes 
were mainly related to a decrease of IgG (median num-
ber of IgG with MFI > 500 28 vs 38 pre-immune sup-
pression, p = 0.033) while the levels of IgM were overall 
stable (median number of IgM with MFI > 500 33 vs 35 
pre-immune suppression, p = 0.40 Supplementary Fig. 4).

Patients who develop irAEs have different mean 
and median MFI levels of specific AutoAb at baseline 
(pre‑ICI) as compared with those who do not develop irAEs
The mean and median MFI for each specific AutoAg 
at baseline in patients with and without G ≥ 2 irAEs 
is reported in the Supplementary Table  3. No signifi-
cant difference was observed with multiple comparison. 
AutoAb with significant difference between patients with 
and without irAEs at univariate analysis are reported in 
Supplementary Table  4. Additionally, no significant dif-
ferences in the median MFI for each specific AutoAg 
were observed between patients with and without history 
of autoimmune disorders (Supplementary Table  5). We 
did not observe a correlation between a specific toxicity 
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and high reactivity against a certain AutoAg (Supplemen-
tary Table 6). However, in some patients who experienced 
organ-specific irAEs we observed pre-ICI high levels 
of AutoAb against the related tissue. For instance, we 
detected high levels of IgG anti cardiac myosin before 
ICI exposure in a patient who subsequently experienced 
immune related myocarditis and very high pre-ICI levels 
of IgG anti-desmin in a patient who experienced colitis. 
Baseline and post-ICI reactivity of organ-specific AutoAb 
in selected patients, compared with median values in 
healthy controls and in all the patients before ICI expo-
sure are reported in Supplementary Table 7.

No difference in the level of IgG and IgM measured 
by ELISA is observed between patients with and without 
irAEs
We compared the value of total IgM and IgG measured 
by ELISA in the pre- and post-ICI samples from patients 
with and without G ≥ 2 irAEs. No differences were 

observed at baseline between patients with and with-
out irAEs G ≥ 2 (median IgM value 3.47 g/L vs 2.88 g/L, 
p = 0.10; median IgG value 15.18  g/L vs 13.97  g/L 
p = 0.49). No significant changes from baseline were 
observed at the time of irAEs (median IgM value pre-
ICI 3.63  g/L vs 3.87  g/L post ICI, p = 0.64; median IgG 
value pre-ICI 15.91  g/L vs 15.60  g/L post-ICI, p = 0.22) 
or between the time of toxicity and after steroids admin-
istration (median IgM value post-ICI 10.70 g/L vs post-
steroid 8.73  g/L p = 0.58; median IgG value post-ICI 
17.11 g/L vs post-steroid 17.33 g/L p = 0.33) (Supplemen-
tary Fig. 5).

Discussion
The relationship between cancer and immune system is 
only partially understood. The identification of reliable 
factors to distinguish upfront subjects with a higher risk 
of developing irAEs could improve treatment outcomes. 
Our data indicate the potential role of antibody-mediated 

Fig. 2 Cumulative incidence of irAEs in patients with “high” vs “low” autoAb at baseline using different cut‑offs. A Cumulative incidence of irAEs 
in patients with “high” vs “low” levels of elevated IgG and IgM at baseline using MFI 500 and 950 as cut‑offs. B Cumulative incidence of irAEs 
in patients with “high” vs “low” levels of elevated IgG at baseline using MFI 500 and 200 as cut‑offs. C Cumulative incidence of irAEs in patients 
with “high” vs “low” levels of elevated IgM at baseline using MFI 500 and 1500 as cut‑offs
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autoreactivity as a predictive marker and/or causal factor 
in irAEs.

The link between generic pre-ICI elevation of AutoAb 
and subsequent development of irAEs is controversial 
[25]. Most published studies assess on a limited number 
of AutoAb, including rheumatoid factor, anti-thyroid and 

antinuclear antibodies (ANA) [25, 28, 58–60]. Few case 
reports have indicated an overall elevation of total IgG 
in patients who developed severe irAEs from ICI, sup-
porting the potential role of gammaglobulin in irAEs eti-
opathogenesis [61–63]. However, the autoantibody levels 
were tested only after the development of the toxicities. 

Fig. 3 Comparison of the level of IgM and IgG with MFI > 500 before ICI administration (baseline) and within 8 weeks from the onset of irAEs 
in 24 patients. A The number of elevated autoAbs before ICI is represented as a blue square (one for each patient) while the number of elevate 
autoAbs at the time of the irAEs is represented as a red triangle. For each patient is reported the tumor type and the type of treatment received 
(monotherapy vs combination). B The differences in the number of IgM and IgG with MFI > 500 are reported for different group of patients divided 
based on treatment received and tumor types. While a significant increase was observed in melanoma patients receiving anti‑PD1 + anti‑CTLA4, 
no significant difference was observed in the other subgroups
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To our knowledge, this is the first study using a large, 
customized panel of AutoAg to test reactivity against 
multiple antigens before immunotherapy exposure. Inter-
estingly we observed a correlation between high pre-
treatment IgG reactivity and irAEs development in the 
subgroup of patients treated with anti-PD1 single agent 
but not in those who received combined treatment. This 
might be due to the sample size (only 12/114 patients 
received anti-PD1 + anti-CTLA4). Nevertheless, it is pos-
sible that other factors, independent from autoAbs, are 
predominant in driving irAEs from anti-CTLA4.

We did not observe a significant correlation between 
pre-ICI reactivity against a specific AutoAg and a par-
ticular irAE, such as pneumonitis or hepatitis. Different 
types of antibodies however can cause similar clinical 
manifestations. As an example, ANA, anti-smooth mus-
cle antibodies, and anti-liver–kidney microsomal anti-
bodies are only some of the autoAbs that can lead to 
autoimmune liver disease [64]. Of note we observed 
some isolated cases of patients who developed toxicity of 
a particular organ such as the heart or the gut and had 
extremely high levels of specific AutoAb pre-ICI (Supple-
mentary Table 7). These observations can be hypothesis-
generating for future mechanistic studies.

In our study, a significant increase of IgM was detected 
near the time of ICI toxicity in patients who developed 
irAEs G ≥ 2. IgM are the first type of antibody generated 
during immune activation [65], therefore the increase of 
this subclass of immunoglobulins at the time of inflam-
mation is not unexpected. The decrease in AutoAg reac-
tive antibodies with immunosuppression is consistent 
with the historical data on the use of corticosteroids lead-
ing to IgG depletion without affecting the levels of other 
immunoglobulins subtypes [66–69]. Further research is 
needed to clarify if hypogammaglobulinemia following 
immunosuppressive treatment can represent a useful 
biomarker to predict early recovery from ICI-toxicities 
and select patients for rapid prednisone tapering.

Neoplastic processes are known to stimulate the pro-
duction of AutoAb through different mechanisms, 
including rapid cancer cell turnover, altered protein 
expression and chronic inflammation [70, 71]. The 
median IgM levels detected with ELISA in pre-ICI col-
lection from cancer patients included in this study were 
above the normal range established for the healthy popu-
lation [72]. Moreover, in our cohort, cancer patients had 
higher IgG and IgM reactivity as compared to healthy 
controls. The patients and the healthy controls were 
not matched and multiple factors such as age and sex 
might have contributed to this difference. Still, a con-
nection between cancer and increased AutoAb produc-
tion can not be excluded. Paraneoplastic syndromes are 
a well-known phenomenon where tumors lead to the 

production of AutoAb attacking different organs such 
as the nervous system [73]. It is possible that there is a 
proportion of patients who, while developing a certain 
degree of autoreactivity, do not develop clinical mani-
festations. Anti-cancer treatments such as immunother-
apy, can alter the equilibrium between cancer and the 
immune system by triggering AutoAb production and 
autoimmune phenomena through several mechanisms 
(e.g. cross-reactivity between cancer and healthy tissue 
antigens) [8]. The involvement of tissue specific AutoAb 
has been demonstrated for some of the most lethal ICI-
related toxicities, such as AutoAb against the acetyl-
choline receptor in myasthenia-like syndrome [74], and 
anti-HU AutoAb in immune-related encephalitis [75]. 
These events could represent the effect of immunother-
apy on an immune system already altered by cancer and 
prone to autoreactivity.

To assess the potential effect of senescence on AutoAb 
levels we compared IgG and IgM reactivity at baseline in 
patients, grouping them by age. Interestingly we observed 
a higher IgG and IgM reactivity in patients ≤ 50 years and 
no other significant differences. These results suggest that 
the greater reactivity observed in patients versus healthy 
controls might be related to the cancer rather than to the 
older age.

In our study, we observed a greater proportion of male 
patients developing G ≥ 2 irAE; however, a clear correla-
tion between demographic characteristics, such as age 
or sex and probability of toxicity from ICI has not been 
established in large randomized clinical trials [35, 76, 77]. 
The female sex is known to have a greater propensity to 
develop some autoimmune conditions such as systemic 
lupus erythematosus and rheumatoid arthritis due to the 
effect of estrogen and prolactin on the immune system 
[78]. ICI activate the immune system regardless of the 
presence of sex hormones. This can explain why there is 
no evidence of an increased risk of irAEs in the female 
sex.

We did not observe a correlation between pre-exist-
ent autoimmune disorders and irAEs development. The 
absence of an increased risk of irAEs in patients with a 
history of autoimmune disease has also been reported in 
other studies and prospective trials are ongoing to vali-
date the safety of ICI in this population [79–82]. Moreo-
ver, we did not detect higher reactivity against a specific 
AutoAg in patients with prior autoimmune conditions. 
This is not unexpected, the decrease of AutoAbs titers 
overtime following the acute phase of an autoimmune 
disease is a common event [83, 84].

Our study has several limitations, including the het-
erogeneity of tumor types. The indications of approved 
ICI-based therapies however are constantly expanding. 
Therefore, a standardized test, able to identify upfront 
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patients with a higher risk of irAEs, across different 
tumor types would be of great clinical value. We used 
a novel approach to measure global reactivity against a 
large number of antigens to assess the potential role of 
pre-existent AutoAg reactivity in irAEs development. 
Importantly this approach, going beyond the assess-
ment of each single tissue-specific antibody, was able 
to predict the risk of irAEs irrespectively of the spe-
cific type of toxicity. Of note, the total levels of IgG/
IgM tested with ELISA were not able to discriminate 
patients with a higher probability to develop irAEs, 
indicating the higher sensitivity in AutoAb detection 
of the array technology. The retrospective nature, the 
small sample size and the low proportion of patients 
with blood samples collected at the time of irAE rep-
resent additional limitations of our analysis. A pro-
spective study is currently ongoing at our institution 
to validate these observations (NCT04107311). If 
validated in a prospective cohort, autoantibody pro-
filing might represent a useful tool to identify upfront 
patients at high risk of clinically relevant irAEs through 
a simple blood draw.
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