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Abstract 

Myeloid cells (granulocytes and monocytes/macrophages) play an important role in neuroblastoma. By inducing 
a complex immunosuppressive network, myeloid cells pose a challenge for the adaptive immune system to elimi-
nate tumor cells, especially in high-risk neuroblastoma. This review first summarizes the pro- and anti-tumorigenic 
functions of myeloid cells, including granulocytes, monocytes, macrophages, and myeloid-derived suppressor 
cells (MDSC) during the development and progression of neuroblastoma. Secondly, we discuss how myeloid cells 
are engaged in the current treatment regimen and explore novel strategies to target these cells in neuroblastoma. 
These strategies include: (1) engaging myeloid cells as effector cells, (2) ablating myeloid cells or blocking the recruit-
ment of myeloid cells to the tumor microenvironment and (3) reprogramming myeloid cells. Here we describe 
that despite their immunosuppressive traits, tumor-associated myeloid cells can still be engaged as effector cells, 
which is clear in anti-GD2 immunotherapy. However, their full potential is not yet reached, and myeloid cell engage-
ment can be enhanced, for example by targeting the CD47/SIRPα axis. Though depletion of myeloid cells or blocking 
myeloid cell infiltration has been proven effective, this strategy also depletes possible effector cells for immunother-
apy from the tumor microenvironment. Therefore, reprogramming of suppressive myeloid cells might be the optimal 
strategy, which reverses immunosuppressive traits, preserves myeloid cells as effectors of immunotherapy, and subse-
quently reactivates tumor-infiltrating T cells.
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Introduction
Neuroblastoma is a pediatric tumor originating from 
sympathoadrenal lineage dysregulation [1] which 
exhibits high heterogeneity in disease severity. While 
low- and intermediate-risk neuroblastoma patients 
achieve a 80–95% 5-year overall survival rate, high-risk 

cases only reach 45% [2]. Approximately half of the 
diagnosed neuroblastoma cases are classified as high-
risk, with 20–30% featuring MYCN amplification [3]. 
MYCN, a proto-oncogenic transcription factor, fosters 
tumor cell proliferation, angiogenesis, and metastasis, 
concurrently suppressing immune activation [4]. In 
low-risk cases, no treatment or solely surgery is often 
curative [5, 6], while high-risk patients undergo induc-
tion chemotherapy, surgery, high-dose chemotherapy 
with autologous stem cell transplantation (ASCT), 
and radiation therapy [7]. Since 2015, anti-disialogan-
glioside (GD2) antibody immunotherapy and 13-cis 
retinoic acid (isotretinoin) is applied as consolidation 
therapy. Initially anti-GD2 was combined with IL-2 
and Granulocyte/Macrophage-Colony Stimulating 
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Factor (GM-CSF) (USA) or IL-2 only (Europe). Since 
the administration of IL-2 has been proven to be of no 
additional benefit this has been omitted [8].

Neuroblastoma has a low mutational burden [9] 
as well as low human leukocyte antigen (HLA) type I 
expression [10], limiting tumor recognition by the T 
cells. Due to the scarcity of neo-antigens, the develop-
ment of immunotherapeutics, including anti-tumor 
antibodies, T cell vaccines and chimeric antigen recep-
tor (CAR) T cells hampered initially. However, success 
was achieved by targeting the highly expressed GD2 
[11] using antibody therapy, thereby activating NK cells 
and myeloid cells. Anti-GD2 antibody therapy signifi-
cantly improved survival for high-risk neuroblastoma 
patients [12, 13]. Although GD2-targeting CAR T cells 
have been developed, they failed to enhance survival 
initially, likely due to T cell exhaustion by the immuno-
suppressive tumor microenvironment (TME) (reviewed 
in [13]). However, recently, a phase I/II trial showed 
that the use of GD2-targeting CAR T cells (GD2-
CART01) was feasible and safe in treating high-risk 
neuroblastoma, resulting in 3-year overall survival and 
event-free survival of 60% and 36%, respectively [14].

Neuroblastomas, like many solid tumors, harbor a 
complex immunosuppressive microenvironment hin-
dering immune-mediated tumor clearance. Tumor-
infiltrating lymphocytes are often inactivated or 
exhausted due to immunosuppressive factors, includ-
ing cytokines (IL-6, IL-10, TGF-β, galectin-1) secreted 
by tumor, stromal, and myeloid immune cells [15–19]. 
Furthermore, MYCN overexpression in neuroblas-
toma cells diminishes NKG2D ligands, impeding NK 
cell activation [20]. Gangliosides like GD2 (cell-bound 
or soluble) suppress immunity by binding to myeloid 
checkpoint Siglec-7 [21], and  CD8+ T cell cytotoxicity 
is curtailed via intracellular granule interference [22]. 
Lymphocyte activation is further hampered by recruit-
ment and induction of immunosuppressive cells, such 
as regulatory T cells (Tregs), tumor-associated mac-
rophages (TAMs) and myeloid-derived suppressor cells 
(MDSCs) [23].

While often implicated in immunosuppression, mye-
loid cell subsets also possess potent anti-tumorigenic 
properties. This review comprehensively outlines the 
dualistic roles of myeloid cells in neuroblastoma. The first 
part summarizes their pro- and anti-tumorigenic func-
tions during the development and progression of neuro-
blastoma. The second part discusses the involvement of 
myeloid cells in current treatment regimen and explores 
novel strategies for their targeting, including: (1) engag-
ing myeloid cells as effectors, (2) ablating myeloid cells, 
(3) blocking recruitment to the TME and (4) reprogram-
ming of myeloid cells.

Myeloid subpopulations in the neuroblastoma 
microenvironment
While the field of tumor immunology initially focused 
on dissecting the role of lymphocytes, there is a grow-
ing awareness of the significance of myeloid cells. 
Myeloid cells comprise monocytes, macrophages, 
granulocytes (mainly neutrophils and eosinophils), 
MDSC and certain DC subsets. Though some DCs are 
of myeloid origin, they are beyond the scope of this 
review, as they have been extensively covered else-
where (reviewed in [24]). MDSC can be categorized 
into three subsets: polymorphonuclear MDSC (PMN-
MDSC,  CD33+CD14−CD15+LOX1+), monocytic MDSC 
(M-MDSC,  CD33+CD14+CD15−HLA-DR−/low) and 
early MDSCs (E-MDSC,  CD11b+CD33+CD14−CD15−) 
[25–27]. Identifying specific MDSC subsets can be 
challenging due to overlapping lineage markers with 
other immune cells such as neutrophils and monocytes 
(reviewed in [28]). However, the main defining charac-
teristic of MDSCs is their immunosuppressive function. 
Recent markers such as LOX-1 and CD84 expression on 
PMN-MDSCs [26, 29] or gradient centrifugation [30] can 
aid in distinguishing PMN-MDSCs from neutrophils, as 
PMN-MDSCs reside in the low-density (peripheral blood 
mononuclear cells; PBMC) fraction, while neutrophils 
are high-density cells. Furthermore, M-MDSCs can be 
differentiated from monocytes by lower or absent HLA 
class II expression and increased C-X-C motif chemokine 
receptor 1 (CXCR1) expression [25, 31]. The challenges 
in accurately identifying MDSCs often lead to inconsist-
encies in nomenclature across studies. In this review, we 
adhere to the nomenclature used in the referenced litera-
ture, considering the mentioned immune cell subsets as 
they are described. Now, we will first discuss the involve-
ment of each of these myeloid immune subsets in neuro-
blastoma, starting with neutrophils (Fig. 1).

Neutrophils
Neutrophils are short-lived phagocytes (though their 
exact lifespan is heavily under debate) and are the most 
abundant leukocyte population in the human body, pri-
marily residing in the bone marrow [32, 33]. Approxi-
mately  1011 neutrophils are released from the bone 
marrow and enter circulation daily, with an additional 
release during inflammatory conditions, upon which they 
migrate towards the sites of inflammation [34].

The prognostic significance of tumor-infiltrating neu-
trophils or the neutrophil-to-lymphocyte ratio (NLR) 
in various cancer types typically indicates unfavora-
ble outcomes [35]. However, in the case of neuroblas-
toma, conflicting and inconclusive findings have been 
reported regarding the correlation between neutrophils 
and disease progression. Initial studies by Morandi 
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et  al. demonstrated increased neutrophil counts in 
peripheral blood samples from patients with localized 
neuroblastoma compared to patients with metastasized 
neuroblastoma, hence neutrophils were associated with 

improved overall survival (OS) [36]. Similarly, Zeng 
et al. found a positive correlation between higher num-
bers of tumor-infiltrating macrophages and neutro-
phils and increased OS [37]. Conversely, other studies 

Fig. 1 Overview of the interactions of myeloid cell subsets in the tumor microenvironment of neuroblastoma. A neuroblastoma tumor is shown 
in the center, surrounded by various myeloid immune cells: neutrophils, MDSC, monocytes, TAM, and eosinophils. For each of these cell types, 
pertinent interactions within the TME are depicted. For neutrophils, a high NLR is associated with unfavorable clinical outcomes. Reported 
tumor-neutrophil interactions involve the induction of neutrophil adhesion to neuroblastoma cell lines through IFNγ and IL-1, resulting in increased 
ICAM-1 expression on neutrophils. MDSCs are linked to T cell activation inhibition, notably through P2X7 receptor activation leading to increased 
ATP levels within the TME. Additionally, neuroblastoma-conditioned medium induces MDSCs through M-CSF and Arg-1/2. While most mouse 
MDSCs exhibit an M-MDSC phenotype, human MDSCs present a PMN-MDSC signature. For monocytes, LMR was not correlated with clinical 
outcomes in neuroblastoma patients. In neuroblastoma, TAMs undergo polarization from M1 to M2 as the disease progresses. Additionally, TAMs 
contribute to the preparation of the metastatic niche by taking up tumor-secreted EVs, resulting in the upregulation of immunosuppressive 
cytokines and genes associated with tumor cell extravasation, and via the CXCL2/CXCR2 axis. In MYCN-amplified neuroblastoma, TAMs 
exhibit elevated expression of macrophage-related immune checkpoints CD47 and Siglec7, in contrast to MYCN-nonamplified tumors. 
MYCN-nonamplified neuroblastoma is characterized by elevated CCL2 secretion by TAMs, resulting in the recruitment of TAMs, myeloid cells, 
and plasmacytoid DC. Furthermore, TAM-induced hypoxia leads to the inhibition of NK cells through HIF-2α production. TAMs also collaborate 
with CAFs and MSCs to promote tumor progression. Although our understanding of eosinophils, mast cells, and basophils is limited, IGF-2 secreted 
by eosinophils is suggested to play a role in neuroblastoma tumor growth. Abbreviations: Arg1/2 = arginase-1/2, ATP = adenosine triphosphate, 
CAF = cancer-associated fibroblast, CAF = cancer-associated fibroblasts, CCL2 = C–C motif chemokine ligand 2, CXCL2 = C-X-C motif chemokine 
ligand 2, CXCR2 = C-X-C motif chemokine receptor 2, DC = dendritic cell, Eo = eosinophil, EV = extracellular vesicles, EVs = extracellular vesicles, 
HIF-2a = hypoxia inducible factor 2α, ICAM-1 = intercellular adhesion molecule-1, IFNγ = interferon gamma, IGF-2 = insulin-like growth factor 
2, LMR = lymphocyte-to-monocyte ratio, M-CSF = macrophage-colony stimulating factor, M-MDSC = monocytic myeloid-derived suppressor 
cells, MDSC = myeloid-derived suppressor cell, Mono = monocyte, MSC = mesenchymal stromal cell, MSC = mesenchymal stromal cells, 
NB = neuroblastoma, NB-NA = MYCN non-amplified neuroblastoma, Neutro = neutrophil, NK = natural killer, NLR = neutrophil-to-lymphocyte ratio, 
PMN-MDSC = polymorphonuclear myeloid-derived suppressor cells, TAM = tumor-associated macrophage, TME = tumor microenvironment
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did not observe significant associations between neu-
trophils and survival [38], or even found the opposite 
[39–41]. Zhang et  al. reported that a higher NLR was 
associated with reduced OS [39]. Erbe et  al. did not 
find a significant correlation between NLR and survival, 
but they did note that a higher neutrophils count was 
associated with shortened event-free survival (EFS) 
[41]. Lee et al. observed that elevated neutrophil counts 
were associated with a higher cumulative incidence of 
disease progression, although not significantly impact-
ing EFS or OS [40]. However, in a subgroup analysis of 
high-risk neuroblastoma patients, the correlation was 
stronger, with a high neutrophil count significantly 
associated with reduced EFS. Although these results 
appear conflicting, there are indications that high neu-
trophils counts in blood may indicate a positive prog-
nosis in localized neuroblastoma (low-risk), whereas 
high neutrophil counts in high-risk neuroblastoma are 
associated with a negative prognosis, as suggested by 
the studies of Morandi and Lee. Nevertheless, further 
investigations, specifically differentiating between low- 
and high-risk patients, are required to confirm these 
hypotheses in the future.

The interaction between neutrophils and neuro-
blastoma cells was studied already decades ago, albeit 
mostly in  vitro. Two studies showed that cytokines like 
tumor necrosis factor alpha (TNFα), Interleukin (IL)-1 
and interferon gamma (IFNγ) induce neutrophil adhe-
sion to SK-N-SH and LAN-1 neuroblastoma cell lines 
by upregulating intercellular adhesion molecule-1 
(ICAM-1) expression [42, 43]. Blocking lymphocyte 
function-associated antigen 1 (LFA-1, formed by CD11a 
and CD18), the ligand of ICAM-1, prevented cytokine-
induced neutrophil adhesion to neuroblastoma cells. 
However, neutrophil binding to SK-N-MC cells was very 
high and independent of stimulatory cytokines or LFA-
1, indicating multiple adhesion mechanisms exist for dif-
ferent neuroblastoma cell lines. Interestingly, co-culture 
experiments demonstrated that endothelial cells down-
regulated adhesion receptor CD33 upon interaction with 
neuroblastoma cells, thus impairing neutrophil adhesion 
and extravasation [44]. Nevertheless, Fultang et al. indi-
cated the presence of  CD15+ neutrophils in neuroblas-
toma tumors, particularly in high-risk disease, suggesting 
their ability to extravasate and localize around the vascu-
lature [45]. Direct co-culture of neuroblastoma cell lines 
with neutrophils exhibited both pro-tumorigenic (SMS-
KCN and SMS-LHN) and anti-tumorigenic (LAN-1) 
effects, in a cell–cell contact independent manner [46]. 
These studies highlight both pro-tumorigenic and anti-
tumorigenic effects of neutrophils and touch upon the 
intricate interplay between neutrophils and the neuro-
blastoma cells in the TME.

More recently, Martínez-Sanz and colleagues identi-
fied upregulated neutrophil-related mRNA transcripts 
(including CGR3B, FPR1, S100A8/9, and SIGLEC9) in 
both early and late-stage neuroblastoma, compared to 
healthy adrenal gland tissue [47]. However, the exact 
interactions between neutrophils and tumor cells in the 
TME remain largely unknown. After the initial interest 
in neutrophils, immunotherapy research focused more 
on harnessing the adaptive immune system and engag-
ing NK cells through antibody therapy in the early 2000s, 
which may explain the scarcity of data on neutrophils. 
Furthermore, a nomenclature change has led to (immu-
nosuppressive) neutrophils being described more fre-
quently as PMN-MDSC in cancer. Consequently, we will 
now delve into the role of these cells in neuroblastoma.

Myeloid‑derived suppressor cells
MDSCs represent an immature immunosuppressive 
subset of myeloid cells that undergo expansion during 
pathological conditions such as inflammation and cancer 
[48, 49]. Their presence has been associated with poor 
clinical outcomes in various cancer types [50]. Under 
the influence of continuous cytokine production within 
the TME, undifferentiated myeloid cells from the bone 
marrow enter circulation and infiltrate the tumor, where 
they often fail to mature (reviewed in [50–52]). MDSCs 
exert immunosuppressive effects by suppressing T and 
NK cell activation and cytotoxicity, while promoting Treg 
and M2 macrophage polarization. They employ various 
mechanisms to induce immune suppression, including 
the production of reactive oxygen species (ROS), nitric 
oxide (NO), anti-inflammatory cytokines, and the deple-
tion of L-arginine via arginase (Arg)-1 [48, 53, 54]. In 
general, M-MDSCs exhibit higher immunosuppressive 
activity than PMN-MDSCs, suppressing both antigen-
specific and non-specific T cell responses [48].

In neuroblastoma-bearing mice, both PMN-MDSC 
and M-MDSC induce T cell suppression [55–59]. 
Notably, TH-MYCN mice, which exhibit spontaneous 
neuroblastoma development due to MYCN overexpres-
sion, showed a higher PMN-MDSC abundance com-
pared to M-MDSC [60]. Conversely, in a commonly 
used neuroblastoma mouse model involving A/J mice 
injected with NXS2 neuroblastoma cells intravenously, 
M-MDSC displayed higher levels of Arg-1 and iNOS, 
and produced higher levels of TGF-β1 and ROS com-
pared to PMN-MDSC [56]. This hints at M-MDSCs’ 
superior suppressive potency compared to PMN-
MDSC, a trend observed in other cancer types as well 
[61, 62]. Co-injection of M-MDSCs with NXS2 neu-
roblastoma cells promoted tumor growth more than 
PMN-MDSC co-injection, underscoring their distinct 
roles. MDSCs’ immunosuppressive actions involved 
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P2X7 receptor activation, which elevates extracellular 
adenosine triphosphate (ATP) levels within the TME. 
P2X7R agonist BzATP induced M-MDSCs to secrete 
chemoattractant C–C motif chemokine ligand (CCL)-2, 
and upregulated Arg-1, ROS, and TGF-β1 in MDSC cell 
lines MSC-1 and MSC-2.

Furthermore, neuroblastoma-conditioned medium has 
been shown to induce MDSCs. Cultivating hematopoi-
etic progenitors or monocytes in such media generated 
immunosuppressive myeloid cells [57, 59, 63]. Intrigu-
ingly, Arg-2-expressing neuroblastoma cells depleted 
local and circulating arginine levels, similar to the mech-
anism employed by MDSCs [63]. Arg-1 in neuroblastoma 
hindered myeloid activation and suppressed  CD34+ bone 
marrow progenitor cell proliferation, suggesting that 
arginine deprivation contributes to MDSC induction in 
neuroblastoma [64]. Additionally, the macrophage-col-
ony stimulating factor (M-CSF)/colony stimulating factor 
1 receptor (CSF-1R) axis was suggested to drive myeloid 
differentiation into M-MDSCs in neuroblastoma [57]. 
Elevated M-CSF, CSF-1R, CD68, and CD14 correlated 
with poor patient outcomes. Intriguingly, primary human 
monocytes polarized into suppressive  CD14+CSF-1R+ 
M-MDSC upon co-culture with neuroblastoma cells, 
mediated by tumor-originating M-CSF and attenuated 
through CSF-1R blockade.

Limited neuroblastoma patient data exists on MDSC 
subsets in circulation. Santilli et  al. found elevated 
PMN-MDSCs in the peripheral blood of patients 
with neuroblastoma vs. controls [65]. Furthermore, 
high-risk neuroblastoma exhibited higher levels of 
 CD33+CD11b+HLA-DR− MDSCs (M-MDSC) than low-
risk neuroblastoma [60]. Unexpectedly, responsive high-
risk patients had more circulating HLA-DR− MDSCs 
compared to patients who were refractory to therapy 
[66]. Recent single-cell transcriptomics unveiled exclu-
sive tumor-infiltrated immature myeloid/neutrophil cells 
in bone marrow metastasis of neuroblastoma patients, 
suggesting PMN-MDSC involvement [64]. PMN-MDSC 
signatures were observed in primary neuroblastoma 
tumors based on single-cell transcriptomic analysis [58], 
with higher proportions of MDSCs detected in MYCN-
amplified tumors compared to MYCN-nonamplified 
tumors. At relapse, tumors had increased MDSC propor-
tions compared to diagnosis [60].

In summary, in  vivo studies implicate a more impor-
tant role for M-MDSC in neuroblastoma tumor progres-
sion compared to PMN-MDSC due to their prominent 
suppressive function. However, it remains uncertain if 
this translates to the human context. Furthermore, it is 
important to note that MDSC spatial distribution, abun-
dance, and interactions with other immune cell subsets 
within the TME remain undisclosed.

Monocytes & macrophages
Monocytes and macrophages play a significant role 
within the myeloid compartment of the TME and pos-
sess phagocytic abilities. Unlike neutrophils, circulating 
monocyte levels or leukocyte-to-monocyte ratio (LMR) 
are not linked to overall survival [38, 41]. Tumor-derived 
chemokines and cytokines can recruit monocytes to 
the TME, where they can differentiate into monocyte-
derived macrophages [67]. Additionally, tissue-resident 
macrophages can also be found in the TME, originat-
ing from yolk-sac precursors and exhibiting self-renewal 
capabilities [68]. Furthermore, recruited M-MDSCs can 
differentiate into macrophages at the tumor site [69]. 
Macrophages are traditionally categorized into M1 (pro-
inflammatory) and M2 (anti-inflammatory) states [70], 
yet they exhibit notable plasticity and heterogeneity 
along this spectrum.

Macrophages in human neuroblastoma have a pre-
dominant M2-like phenotype, with some M1 pres-
ence [45, 58, 71–74]. In the TH-MYCN mouse model, 
TAMs transitioned from an M1 phenotype  (MHCIIhigh/
CD206low) to an M2 phenotype  (MHCIIlow/CD206high) 
during tumor progression [55]. Additionally, the number 
of infiltrating immune cells and the proportion of TAMs 
(F4/80+/CD45+) among total infiltrating cells increased 
in advanced TH-MYCN tumors. In  vitro, neuroblas-
toma-exposed monocytes/macrophages upregulated M2 
markers (CD163, CD204, IL-10) [73, 75]. Conversely, Ful-
tang et  al. observed that neuroblastoma cells polarized 
macrophages toward an M1 phenotype  (CD68+CD163−) 
[45]. Consistent with these findings, low numbers of 
M2-polarized macrophages were observed to be cor-
related with unfavorable clinical outcome in neuro-
blastoma [37, 76]. Importantly, TAM emerge as the 
predominant PD-L1-expressing cells within the TMA, 
which was associated with improved clinical outcome in 
high-risk patients [77]. Finally, single-cell RNA sequenc-
ing revealed an augmented presence of an inflammatory 
monocyte cell state (IL1BhighS100Ahigh) in neuroblastoma 
compared to normal tissue [78].

Macrophages drive neuroblastoma dissemination by 
creating premetastatic niches, facilitating tumor cell 
colonization [79]. Studies utilizing SK-N-BE-derived pri-
mary tumors revealed the release of extracellular vesicles 
that are engulfed by macrophages at distant sites such 
as the liver and bone marrow. Consequently, this led to 
upregulation of immunosuppressive cytokines (IL-10), as 
well as genes involved in the recruitment of MDSC and 
tumor cell extravasation, rendering the premetastatic 
niche more attractive for tumor cell colonization. In 
accordance, high numbers of M2 macrophages in the pri-
mary neuroblastoma tumor correlated with the presence 
of bone marrow metastasis and poor clinical outcome 
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[71, 73, 80]. Moreover, macrophage-derived CXCL2 pro-
moted neuroblastoma invasiveness, but CXCL2/CXCR2 
mechanism in this context remains unclear [73]. These 
are the only studies investigating the role of myeloid 
cells in neuroblastoma metastasis, though this has been 
described more extensively in other cancers, indicating 
there is a knowledge gap on this topic. However, recently 
it was described that macrophage migration inhibitory 
factor (MIF) and midkine (MDK) are expressed in neu-
roblastoma [81, 82], factors that are known to be involved 
in metastasis in other cancers [83, 84]. Unraveling the 
involvement of MIF and MDK in neuroblastoma metas-
tasis could provide important information in the future.
MYCN-amplified and non-amplified neuroblastomas 

exhibit varying macrophage infiltration, reflecting dis-
tinct immune profiles due to specific genetic alterations. 
Chromosome 11q deletion or MYCN amplification in 
neuroblastomas exhibit higher numbers of M2-polarized 
 (CD163+) macrophages and an activated Th2-lympho-
cytes/M2-macrophage axis compared to neuroblastoma 
lacking these mutations [72, 73, 85]. Interestingly, MYCN 
amplification is generally associated with lower immune 
infiltrate than non-amplified cases [86]. Theruvath et al. 
confirmed this by re-analyzing public databases, reveal-
ing higher Siglec 7 and CD47 expression on MYCN-
amplified neuroblastoma macrophages [21]. In metastatic 
non-amplified neuroblastomas, TAM infiltration was 
higher compared to locoregional tumors, with a pre-
dominant M2 phenotype [71]. Furthermore, metastatic 
non-amplified tumors in patients ≥ 18  months showed 
elevated inflammation-related gene expression compared 
to those < 18  months. Consistent with these findings, a 
study involving 129 NA-NB patients reported upregula-
tion expression of CD14, IL-6 and TGF-β in patients with 
poor clinical outcome [87].

The NB-tag mouse model [88], resembling human 
non-amplified neuroblastoma, recruits TAMs, myeloid 
cells, and plasmacytoid DCs through CCL2 signaling 
[88, 89]. Macrophage-secreted CCL2 is prominent in 
non-amplified tumors, and inversely correlated with 
MYCN amplification [87, 90]. The recruited DCs sub-
sequently attracted  CD4+ and  CD8+ T cells via CCL22 
and CCL19 [89]. In vitro and in vivo studies have dem-
onstrated that CCL2-attracted TAMs in neuroblas-
toma enhance IL-6 expression, promote tumor growth 
and inhibit apoptosis [87, 88]. Furthermore, TAMs in 
non-amplified tumors activate STAT3 in neuroblas-
toma cells, upregulating c-Myc that reciprocally induces 
CCL2 secretion, forming a positive feedback loop [88]. 
Consistent with these findings, a recent in  vivo study 
reported that depletion of macrophages expressing the 
CCL2 receptor (CCR2) prevented tumor formation in 
an ALK-mutated TH-MYCN mouse model [91].

Hypoxia, common in cancer due to insufficient oxygen 
supply (reviewed in [92]), upregulates membrane-bound 
TNFα on neuroblastoma cells, triggering TAMs to pro-
duce CCL20 [93]. This TAM-derived CCL20 recruits 
natural killer T (NKT) which eliminate pro-tumorigenic 
 CD1d+ TAM at the tumor site [87]. Despite this anti-
tumorigenic potential, hypoxia impairs NKT cell func-
tion against  CD1d+ TAMs [93]. Additionally, hypoxia 
inducible factor 2α (HIF-2α)-producing TAMs were 
detected alongside neuroblastoma neural crest-like cells 
in the perivascular niche, where high levels of vascular 
endothelial growth factor (VEGF) were observed [94]. 
This suggests a cooperative interaction between neuro-
blastoma crest-like cells and macrophages to promote 
angiogenesis via HIF‐2α-mediated VEGF expression.

In neuroblastoma, TAMs collaborate with cancer-
associated fibroblasts (CAFs) and mesenchymal stromal 
cells (MSC) to support tumor progression, especially 
in relapse patients. TAMs induce CAF proliferation 
[73], and MSCs/CAFs shield monocytes from apoptosis 
through in an IL-6-dependent manner [95]. The interac-
tions of monocytes and MSC resulted in the significant 
upregulation of several pro-tumorigenic cytokines and 
chemokines, including TGF-β1, MCP-1, IL-6, IL-8, and 
IL-4. Furthermore, the abundance of MSC and CAFs 
was correlated with tumor progression, including high 
histological malignancy and low infiltration of T and 
NK cells [73, 96].

In summary, despite some conflicting findings, most 
studies suggest a notable role for M2-polarized TAMs in 
neuroblastoma progression, driving c-Myc expression, 
CAF recruitment, and angiogenesis.

Eosinophils
Currently, limited knowledge exists regarding the roles of 
granulocytes other than neutrophils in neuroblastoma, 
including eosinophils, basophils, and mast cells. To our 
knowledge, no literature is available discussing the role of 
basophils and mast cells in neuroblastoma. Eosinophils, 
usually associated with allergic reactions and immune 
responses against parasites [97], may have a minor role in 
neuroblastoma. In cancer, eosinophils generally display 
anti-tumorigenic properties, although some pro-tumor-
igenic effects have also been described (reviewed in [98]).

Eosinophils were first identified in neuroblastoma in 
the 1990s when a study of 21 tumors revealed their pres-
ence, along with insulin-like growth factor 2 (IGF-2) 
expression in these cells [99]. The authors proposed a 
mechanism whereby IGF-2, expressed both autocrinally 
and paracrinally (including by eosinophils), promotes 
tumor growth, but this mechanism was never confirmed. 
A subsequent study reported a positive link between low 
eosinophil count and patient survival [100]. Though not 
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yet reported in neuroblastoma, tumor-infiltrating eosino-
phils are common in various cancer types [98], suggest-
ing they are possibly present in the neuroblastoma TME 
as well.

The role of epigenetics in myeloid cells and therapy 
resistance
Myeloid cells exhibit a high degree of plasticity, character-
ized by their ability to deviate from typical differentiation 
pathways and generate diverse tolerogenic myeloid cell 
states within the TME. A substantial component of this 
plasticity can be attributed to epigenetic mechanisms, with 
myeloid cells displaying marked responsiveness to his-
tone modifications, alterations in DNA methylation pat-
terns, chromatin remodeling, and the regulatory impact 
of non-coding RNA molecules [101–103]. Importantly, 
abnormal epigenetic modifications have been reported in 
the development and progression of cancer and therapy 
resistance [104, 105], and are closely related to altered 
glucose, lipid, and amino acid metabolism in the TME 
as thoroughly reviewed elsewhere [103, 105, 106]. For 
instance, histone citrullination, catalyzed by peptide argi-
nine deiminase (PAD), is associated with the creation of 
neutrophil extracellular traps (NETs) in cancer, contribut-
ing to both innate immunity and tumor progression [107]. 
In addition, Hypoxia and M1 macrophages drive histone 
lactylation through lactate accumulation in the TME. This 
upregulated methyltransferase-like 3 (METTL3) in infil-
trating myeloid cells in colon cancer via H3K18 lactyla-
tion, crucial for the transcription of immunosuppressive 
genes [108]. Furthermore, reduction of methylation at 
the Arg1 and STAT3 promoter regions has been reported 
in ex  vivo induced MDSCs, resulting in the release of 
STAT3-associated cytokines IL-6 and IL-10, which subse-
quently activated STAT3 phosphorylation. The phospho-
rylated STAT3, in turn, bound to the Arg1 and S100A8 
promoter regions, leading to upregulation of Arg1 and 
S100A8, thereby augmenting the immunosuppressive 
capacity of MDSCs [109, 110]. Fetahu et  al. identified 
key transcription factors in myeloid cells of neuroblas-
toma bone marrow metastases linked to open chromatin 
regions in genes associated with M2 polarization, tumor 
growth, and metastases, including IL-10, TIMP1, and 
EREG [111]. Finally, several studies suggest that PD-1 and 
PD-L1 expression in tumors is decreased due to epigenetic 
changes, resulting in resistance to immune checkpoint 
therapy. Interestingly, the DNA-demethylating agent aza-
cytidine increased PD-L1 expression in non-small cell lung 
cancer patients [112, 113].

In neuroblastoma, two different epigenetic states have 
been defined: mesenchymal or neuro crest cell-like 
cells (MES) with a less-differentiated state, and adren-
ergic or sympathetic noradrenergic cells (ADRN) with 

a more differentiated state [114–116]. In primary neu-
roblastomas, the initial tumor mainly consists of the 
ADRN state [114, 115], but the MES state becomes more 
prominent during relapse and metastasis [117]. Studies 
showed that human neuroblastoma cells with stronger 
MES signature have a higher basal inflammatory state, 
promote T cell infiltration by secreting inflammatory 
cytokines, and respond to immune checkpoint therapy 
in an immunocompetent mouse model [118, 119]. Spe-
cifically, PRRX1 a component of the mesenchymal core 
regulatory circuitry, activates the transcription of MHC 
class I and APP genes which subsequently enhance the 
immunogenic state of neuroblastoma cells [119]. Fur-
thermore, sensing of double-stranded RNA in MES state 
neuroblastoma cell lines resulted in secretion of pro-
inflammatory cytokines, enrichment of inflammatory 
transcriptomic signatures, and increased tumor killing 
by T cells in vitro [118]. Interestingly, genetically switch-
ing unresponsive ADRN state neuroblastoma cell lines 
towards the MES state fully restored responsiveness. 
These studies did, however, not investigate the role of 
myeloid cells in relation to the epigenetic states of neu-
roblastoma cells.

In summary, epigenetic alterations are important 
for immunotherapy resistance, governing not just the 
expression of immune checkpoint inhibitors, but also 
influencing immune cell infiltration, antigen presenta-
tion, and the expression and release of cytokine profiles 
within the tumor. Furthermore, they drive myeloid cell 
reprogramming toward immunosuppressive subsets 
within the TME, amplifying their suppressive potential.

The role of myeloid cells in immunotherapy
As previously discussed, myeloid cells have been shown 
to predominantly exhibit a pro-tumorigenic role in neu-
roblastoma, making them attractive targets for immuno-
therapeutic interventions. In this section, we provide a 
summary of established and emerging therapeutic strat-
egies that specifically target myeloid cells in neuroblas-
toma (Fig. 2).

Myeloid cells as effector cells of immunotherapy
Myeloid effector cells in anti‑GD2 immunotherapy
It is widely recognized that in addition to NK cells, mac-
rophages possess the potential to serve as effector cells 
in current anti-GD2 antibody therapy. As early as 1990, 
it was demonstrated that M-CSF-differentiated mac-
rophages could phagocytose neuroblastoma tumor cells 
upon stimulation with the 3F8 anti-GD2 antibody [120]. 
Recent studies have further emphasized the efficacy of 
macrophages as effector cells in antibody immunother-
apy [21, 77, 121]. However, within the TME, macrophages 
(or TAMs) often exhibit inactivation, refractoriness, or 
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highly immunosuppressive traits, thereby contributing to 
antibody therapy resistance. Interestingly, in two neuro-
blastoma patient cohorts, the presence of TAMs express-
ing PD-L1, as well as the expression of the SLAMF7 
pathway and CD163 in TAMs, was found to be benefi-
cial for high-risk patients and correlated with improved 
survival following immunotherapy [77]. While this may 
appear counterintuitive, it suggests that despite their 
immunosuppressive characteristics, TAMs can still be 
engaged as effector cells in immunotherapy.

Similarly, despite their association with tumor pro-
gression in high-risk neuroblastoma, neutrophils and 
monocytes (or MDSCs) can still be effectively engaged in 
anti-GD2 antibody therapy (Table 1) [46]. In the late 1980s 
and early 1990s, it was demonstrated that neutrophils could 
perform antigen-dependent cellular cytotoxicity (ADCC) 
against human neuroblastoma cells in  vitro with anti-
GD2 antibodies (ch14.18 or 3F8 IgG) [122–125]. Remark-
ably, Barker and colleagues discovered that granulocytes, 

displayed superior killing capacity against NMB-7 neu-
roblastoma cells compared to PBMC [124], which is gen-
erally the opposite in IgG antibody therapy. Furthermore, 
neutrophils derived from neuroblastoma patients (stage 
IV) retained potent ex  vivo killing ability against neuro-
blastoma cells, matching that of neutrophils from healthy 
donors. This neutrophil-mediated killing is marked by the 
release of lytic granules [125] and dependent on CD11b/
CD18 (collectively known as membrane-activated com-
plex 1 (Mac-1) or complement receptor 3 (CR3)), as well as 
FcγRII and FcγRIII [126].

Subsequently, in two clinical trials investigating 3F8 
anti-GD2 antibody therapy, it was demonstrated that 
neutrophil-mediated ADCC was indeed responsible for 
therapeutic efficacy in neuroblastoma patients [128, 129]. 
Activated neutrophils, characterized by the CD11b activa-
tion epitope CBRM1/5, were associated with prolonged 
progression-free survival [129]. Moreover, an FCGR2A 
polymorphism in patients showed a correlation with 

Fig. 2 Three main strategies of targeting myeloid cells in neuroblastoma. Myeloid cells can be 1.) engaged as effector cells of immunotherapy 
via ADCC. 2.) removed from the TME by depletion with antibodies (anti-CD11b, anti-CD105, anti-CD33, or anti-CSF-1R) or myoablative 
chemotherapy. Additionally, myeloid cells can be depleted via inhibition of cytokines via IL6R blockade, or inhibition of TGFβ or STAT3. Finally, their 
recruitment can be blocked with CCR2 inhibitors, or anti-CCL2 or anti- TGFβ. 3.) reprogrammed to an anti-tumor, immunostimulatory phenotype, 
leading to reactivation of T cells. Myeloid cell reprogramming can be achieved by inducing epigenetic modifications, inhibiting cytokines 
and chemokines, suppressing COX activity, stimulating CD40 ligation, and preventing arginine uptake. Abbreviations: ADCC = antigen-dependent 
cellular cytotoxicity, Arg-1 = arginase-1, CCL2 = C–C motif chemokine ligand 2, CCR2 = CCL2 receptor, COX = cyclooxygenase, CSF-1R = colony 
stimulating factor 1 receptor, FcγRs = Fc gamma receptors, IFNγ = interferon gamma, ROS = reactive oxygen species, TGFβ = transforming growth 
factor beta, TME = tumor microenvironment, TNFα = tumor necrosis factor alpha, VEGF = vascular endothelial growth factor
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clinical outcome following anti-GD2 antibody and GM-
CSF therapy [130, 144]. The FcγRIIa-R131 variant exhib-
ited higher affinity for the murine IgG3 3F8 antibody 
than FcγRIIa-H131, resulting in enhanced ADCC. Conse-
quently, patients homozygous for the FCGR2A-R131 allele 
demonstrated extended progression-free survival after 
treatment with murine 3F8 antibody and GM-CSF com-
pared to patients who were heterozygous or homozygous 
for FCGR2A-H131 [130]. It is noteworthy that the affin-
ity of these polymorphisms is reversed for human IgG1 
antibodies, thus leading to an opposite correlation with 
dinutuximab (anti-GD2, CH14.18 antibody), which is of 
the human IgG1 isotype [144]. Given the high expression 
of FcγRIIa on neutrophils, macrophages, and monocytes 
and its absence on NK cells, the prognostic value of this 
FcγRIIa polymorphism indicates that myeloid cells consti-
tute a major effector cell population in antibody therapy 
for neuroblastoma.

Although the introduction of anti-GD2 antibody ther-
apy significantly improved survival rates, resistance still 
develops in many patients. In vitro studies have revealed 
that GD2 expression levels do not correlate with neutro-
phil-mediated ADCC, suggesting abundant GD2 levels 
on all neuroblastoma cells [127]. However, the effective-
ness of neutrophil-mediated tumor cell killing was 
diminished in tumor cells displaying high rates of anti-
body internalization, thus proposing a potential mecha-
nism for treatment resistance.

Previously, anti-GD2 immunotherapy was combined 
with IL-2. However, this was discontinued, since a recent 
randomized phase III trial of patients with high-risk neu-
roblastoma showed that the addition of IL-2 to anti-GD2 
antibody therapy did not improve outcome and increased 
treatment toxicity [8]. Besides its stimulatory effects 
on NK-cell mediated ADCC [145], IL-2 was shown to 
upregulate expression of the adhesion molecule CD18 
on neutrophils, but to decrease total neutrophil numbers 
[131, 146]. Additionally, two immune monitoring stud-
ies in neuroblastoma observed that IL-2 cycles increased 
eosinophil counts [131, 147]. It is generally known that 
eosinophils can be pre-activated by IL-2 and subse-
quently exert ADCC [148]. However, eosinophils are 
likely not involved in tumor killing, since similar levels of 
ADCC were found in patients with high compared to low 
eosinophil count and eosinophil counts were not signifi-
cantly correlated with survival. Furthermore, long-term 
infusion of anti-GD2 in combination with IL-2 resulted 
in induction of Tregs, which inversely correlated with 
IFN-y levels and progression-free survival [135].

In the United States, anti-GD2 antibody therapy is 
enhanced with GM-CSF, but its accessibility and avail-
ability outside the country are restricted due to regulatory 
constraints. GM-CSF increases numbers of circulating 

neutrophils, monocytes, and eosinophils and promotes 
the release of myeloid cell-associated factors such as 
CXCL11, CCL17, CCL23, and MCP4 [131]. However, 
the primary mechanism of GM-CSF is augmenting neu-
trophil-mediated ADCC and to a lesser extent activat-
ing macrophages and monocytes. Both in  vitro and in 
patients, the combination of GM-CSF with anti-GD2 
antibodies activates neutrophils and upregulates CD11b 
expression [12, 123, 125, 126, 128]. Particularly in patients 
with refractory or minimal residual disease, the addition 
of GM-CSF to the treatment regimen has shown favorable 
responses [12, 132]. Interestingly, the route of GM-CSF 
administration influences the degree of neutrophil acti-
vation, with subcutaneous injection resulting in a higher 
percentage of activated neutrophils compared to intra-
venous injection [129]. However, in other cancer types, 
such as liver carcinoma and glioblastoma, GM-CSF is 
involved in the induction of MDSCs [149, 150], but dur-
ing immunotherapy in neuroblastoma, GM-CSF appears 
to activate neutrophils instead. This may be attributed 
to the concurrent antibody therapy skewing neutrophils 
toward an anti-tumor phenotype and/or the intermit-
tent cycles of GM-CSF administration rather than a con-
tinuous treatment. It is plausible that low-concentration, 
chronic GM-CSF stimulation induces MDSCs through 
negative feedback loops, whereas high-concentration, 
acute GM-CSF stimulation as applied in neuroblastoma 
therapy, activates neutrophils. Since GM-CSF is not avail-
able in Europe, several research groups in the Netherlands 
have explored the potential use of G-CSF as an alternative 
to GM-CSF [133]. They concluded that G-CSF exhibited 
comparable potency to GM-CSF in enhancing ADCC by 
neutrophils from both healthy donors and neuroblastoma 
patients. Similar to GM-CSF-enhanced ADCC, the killing 
mechanism was dependent on FcγRIIa and CD11b/CD18. 
Given the similarity in performance between G-CSF 
and GM-CSF, the authors proposed that the addition of 
G-CSF to anti-GD2 immunotherapy should be evaluated 
in patients.

Next to GM-CSF, the current treatment regimen for 
high-risk neuroblastoma includes 13-cis retinoic acid, 
also known as isotretinoin. In  vitro studies have dem-
onstrated that retinoic acid inhibits neuroblastoma 
cell growth and promotes cellular differentiation [151]. 
While retinoic acid alone does not improve overall sur-
vival [152], pretreatment with retinoic acid enhances 
the susceptibility of neuroblastoma cells to antibody 
therapy. Furthermore, differentiated neuroblastoma 
cells treated with retinoic acid produce IL-8, a crucial 
cytokine involved in the attraction of neutrophils [134]. 
IL-8-mediated neutrophil attraction may augment neu-
trophil-mediated killing induced by anti-GD2 antibody 
therapy. However, studies conducted in other advanced 
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cancers have reported that IL-8 production and subse-
quent recruitment of neutrophils/PMN-MDSC can be 
detrimental, particularly in the context of checkpoint 
inhibitor treatment [153, 154]. Additionally, retinoic acid 
can exhibit both immunosuppressive effects, such as dif-
ferentiation of immunosuppressive TAM [155, 156], and 
immunostimulatory effects, such as induction of inflam-
matory anti-tumor macrophages in other cancer types 
[157, 158]. It is important to note though that most of 
these studies involved an isomer of 13-cis retinoic acid—
all-trans retinoic acid—which may have a slightly dif-
ferent mechanism of action. These studies combined 
underscore the potential effects of 13-cis retinoic acid 
treatment on the TME, although its specific impact on 
the neuroblastoma TME remains largely unknown.

Improving myeloid engagement in anti‑GD2 immunotherapy
Several strategies have been developed to improve effi-
cacy of anti-GD2 antibody therapy by targeting myeloid 
cells. For example, neutrophils exhibit stronger activation 
in response to IgA antibodies, via their Fc alpha receptor 
(FcαRI or CD89), compared to IgG antibodies. Our labo-
ratory demonstrated the superior ability of IgA1 anti-
GD2 antibodies, which share the same variable region 
as dinutuximab (ch14.18), in mediating neutrophil-
mediated tumor cell killing compared to IgG1 ch14.18 
[138]. Importantly, IgA anti-GD2 antibodies did not 
induce neuropathic pain in mice, unlike IgG anti-GD2 
antibodies, primarily due to the absence of the comple-
ment factor C1q-binding site. Consequently, IgA anti-
bodies do not activate complement on GD2 expressing 
nerves, a factor implicated in IgG-induced neuropathic 
pain [159]. Moreover, we developed a novel form of IgA 
anti-GD2 antibody (IgA3.0 ch14.18) that is suitable for 
clinical application, lacking O-glycosylation and featuring 
mutations that enhance antibody stability and prolong 
half-life [139]. In long-term mouse models, including 
xenograft and immunocompetent models with IMR32 
and 9464D cells, IgA3.0 ch14.18 demonstrated remark-
able anti-tumor efficacy. Furthermore, IgA3.0 ch14.18 
effectively induced tumor cell killing by patient neutro-
phils, while IgG1 ch14.18-mediated tumor cell killing 
was significantly diminished with patient PBMC com-
pared to healthy donor PBMC. In summary, harnessing 
and enhancing the anti-tumorigenic activity of neutro-
phils holds significant promise as a novel approach in the 
treatment of neuroblastoma.

Another novel strategy to enhance anti-GD2 antibody 
therapy is to block the CD47/SIRPα axis, analogous to 
immune checkpoints in T cell biology such as CTLA-4 
and PD1/PD-L1. CD47, known as the ’don’t eat me’ sig-
nal, is frequently upregulated in various cancers, includ-
ing neuroblastoma [47]. Through its interaction with the 

SIRPα (signal regulatory protein alpha or CD172a) recep-
tor, CD47 inhibits myeloid cell-mediated killing. In the 
context of neuroblastoma, Theruvath et al. demonstrated 
that the combination of IgG anti-GD2 and anti-CD47 
therapy enhanced macrophage-mediated phagocytosis 
of neuroblastoma cells in  vitro synergistically and led 
to tumor eradication in mouse xenograft and syngeneic 
models [21]. The efficacy of this combination therapy 
primarily relied on phagocytosis of tumor cells by mac-
rophages. Furthermore, the study revealed that ligation 
of anti-GD2 antibodies upregulated surface calreticulin, 
which primes macrophages for phagocytosis and disrupts 
the interaction between GD2 and Siglec 7, another mye-
loid checkpoint. Consequently, the authors found that 
the synergy was specific to the combination of anti-GD2 
antibodies, as anti-CD47 therapy showed less synergy 
with antibodies targeting other antigens, such as B7-H3. 
Encouraged by these findings, a clinical trial investigat-
ing the combination of anti-GD2 (dinutuximab) and anti-
CD47 (magrolimab) antibodies in neuroblastoma relapse 
patients was initiated (NCT04751383).

Similarly, anti-CD47 synergizes with antibodies 
solely recognizing the O-acetyl variant of GD2, devel-
oped by the lab of Stephane Birklé [121]. Interestingly, 
anti-O-acetyl-GD2 antibody therapy enhanced CD47 
expression on tumor cells and induced influx of F4/80+ 
macrophages in a NXS2 liver metastasis model, which 
further explains the synergy of anti-GD2 and anti-CD47 
therapy. Though the previous studies did not find a sig-
nificant role for neutrophils in mouse models upon 
anti-GD2 and anti-CD47 combination treatment, Mar-
tínez-Sanz and colleagues showed that human neutro-
phils can be unleashed by this combination strategy 
in vitro [47]. Dinutuximab induced neutrophil-mediated 
killing of unmodified neuroblastoma cell lines up to 
5–20%, whereas up to 80% killing was achieved in CD47 
knockout cell lines. It will be interesting to evaluate in 
patients whether only macrophages or also other myeloid 
cells, such as neutrophils are involved in tumor clearance 
upon combination therapy.

Recently, in other cancers it was described that neu-
trophils can be activated to their full killing potential 
by supplementing IgG antibody therapy with TNF and 
CD40 agonists [160]. Since Voeller and colleagues already 
described synergy between CD40 agonists and anti-GD2 
therapy in neuroblastoma [161], the addition of TNF and 
CD40 agonists to the treatment regimen could prove a 
promising new strategy.

Novel strategies for antibody immunotherapy engaging 
myeloid cells
Currently, alternative targets for antibody therapy in 
neuroblastoma are being explored, to circumvent the 
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problem of GD2 downregulation, which is particularly 
prominent in a mesenchymal subset of neuroblastoma 
cells. Studies have identified B7-H3 as a viable alternative 
target, given its sustained expression in mesenchymal 
neuroblastoma cells [162, 163]. The laboratory of Paul 
Sondel is currently investigating a bispecific SNIPER anti-
body that targets both GD2 and B7-H3, demonstrating 
superior efficacy compared to monospecific anti-B7-H3 
antibodies and lacking the induction of neuropathic pain 
[140]. Furthermore, Kendsersky et al. have demonstrated 
in  vivo efficacy of the B7-H3-targeting antibody–drug 
conjugate (ADC) m276-SL-PBD in patient-derived xeno-
graft (PDX) models of neuroblastoma [141]. However, 
the involvement of myeloid cells in the effector mecha-
nisms of these novel therapies remains unknown.

Another promising target against which ADCs have 
been developed is the oncoprotein GPC2, which is over-
expressed in neuroblastoma and drives tumor cell prolif-
eration [142, 143]. Anti-GPC2 ADCs have been shown to 
induce immunogenic cell death in mouse models (NXS2 
and 9464D) with GPC2 overexpression, leading to the 
recruitment of monocytes, macrophages, and MDSCs to 
the TME. Alongside T cells, macrophages have emerged 
as major mediators of the anti-GPC2 ADC treatment, 
and the combination of anti-GPC2 ADCs with anti-CD47 
blockade has demonstrated a modest reduction in tumor 
burden [143].

Though myeloid cells have a negative image in the con-
text of cancer due to their immunosuppressive traits, 
their potential as effector cells should not be underesti-
mated. Though neutrophils and macrophages are already 
important mediators in antibody therapy their full poten-
tial is not yet reached and myeloid cell engagement can 
be enhanced, for example by targeting the CD47/SIRPα 
myeloid checkpoint.

Removal of suppressive myeloid cells from the TME
Direct depletion of myeloid cells
A potential strategy to counteract the suppressive func-
tion of myeloid cells in the TME is the depletion of 
these cell populations as summarized in Table  2. One 
approach involves using anti-CD11b antibodies to tar-
get and deplete all cells of the myeloid lineage. In a study 
conducted on NXS2 tumor-bearing mice treated with 
dinutuximab, anti-CD11b antibodies resulted in a mod-
est delay in tumor growth and prolonged survival [164]. 
Another approach employs anti-CD105 antibodies, 
which specifically target a transmembrane co-receptor 
for both TGF-β and bone morphogenic protein-9 (BMP-
9). By administering anti-CD105 antibodies, not only 
monocytes but also MDS and endothelial cells could 
be depleted [165]. This approach resulted in improved 
efficacy of anti-GD2 antibodies when combined with 

adoptively transferred activated human NK cells in neu-
roblastoma patient-derived xenograft (PDX) models.

Park et al. studied myeloid depletion methods in a neu-
roblastoma PDX model with bispecific GD2 antibodies 
(GD2-EATs) [166]. They employed various approaches 
including anti-Ly6G antibodies (targeting neutrophils 
and PMN-MDSC), anti-Ly6C antibodies (targeting 
M-MDSC and TAM), anti-CSF-1R antibodies or clo-
dronate liposome (targeting macrophages) and dexa-
methasone (targeting monocytes). All improved T cell 
infiltration and survival when combined with GD2-EATs, 
with macrophage depletion being most effective. Simi-
larly, depletion of human monocytes and macrophages 
through CSF-1R inhibition using BLZ945, in combina-
tion with anti-CSF-1R treatment, enhanced chemother-
apeutic efficacy in immunodeficient NOD/SCID mice 
with neuroblastoma xenografts, independently of T cell 
contribution [167]. Additionally, Abraham et al. demon-
strated that intratumoral injections of small interfering 
RNAs targeting mouse CSF-1 resulted in significant sup-
pression of tumor growth in SK-N-AS and SK-N-DZ neu-
roblastoma xenografts, accompanied by decreased TAM 
infiltration [168]. Finally, treatment of human MDSC 
with the anti-CD33 ADC gemtuzumab ozogamicin led to 
cell death in vitro [169]. In co-culture experiments, gem-
tuzumab ozogamicin restored T cell proliferation and 
enhanced the activity of anti-GD2 CAR-T cells.

Importantly, depletion of myeloid cells is considered a 
‘sledgehammer approach’ as myeloid effector cells that 
are required for immunotherapy are depleted as well. 
Targeting specific suppressive myeloid subsets might 
be more effective. NKT cells offer promise, as they can 
selectively eliminate immunosuppressive TAMs and 
MDSCs via CD1d interaction [87, 170]. NKT cells also 
produce GM-CSF, inducing M1-like TAMs [87, 171] 
and decreased IL-10 expression in PMN-MDSCs [170], 
thereby reverting their suppressive function. Although 
NKT cells are typically present in low numbers within 
the TME, GD2-CAR NKT cells have shown promise by 
maintaining their cytotoxic activity against suppressive 
TAMs [172]. Therefore, harnessing GD2-CAR NKT cells 
could serve as an indirect approach to deplete immuno-
suppressive TAMs and MDSCs in the TME.

Myeloablative chemotherapy
The chemotherapeutic doxorubicin (DOX) is cur-
rently the most specific drug for the selective removal 
of MDSC through ROS-mediated apoptosis induction 
[183], enhancing T cell activity and reducing Tregs 
in a BALB/c NB mouse model [173, 174]. Residual 
myeloid cells exhibited reduced expression of Arg-1, 
indoleamine-pyrrole 2,3-dioxygenase (IDO), as well as 
STAT3, STAT5, and STAT6, which are key signaling 
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pathways involved in MDSC activation. Notably, in 
contrast to findings in a murine study on breast cancer 
[183], DOX affected macrophages in neuroblastoma by 
inhibiting their polarization from M1 to M2 phenotype 
[174]. Dopamine also yielded similar outcomes, albeit 
less potent than DOX. Furthermore, DOX enhanced 
antigen-specific  CD8+ T cell cytotoxicity against neu-
roblastoma cells by upregulating CD3ζ and L-selectin 
[175]. Importantly, DOX improved efficacy of anti-
GD2 therapy and adoptive T cell transfer, resulting in 
enhanced survival rates in BALB/c mice [173].

Platinum-based chemotherapeutics, such as cisplatin, 
have been demonstrated to inhibit STAT signaling, as 
evidenced by their ability to suppress cyclooxygenase 
(COX)-2-expressing M-MDSCs induced by melanoma 
tumor cells in vitro [184]. This inhibitory effect of cis-
platin on M-MDSCs was further observed in patients 
with head and neck squamous cell carcinoma who 
underwent intravenous cisplatin treatment, leading to a 
drastic reduction in M-MDSC frequency. Furthermore, 
the surviving M-MDSCs exhibited decreased expres-
sion of COX2 and Arg-1, a result of attenuated STAT3 
signaling, consequently impairing their ex  vivo T cell 
inhibitory capacity. In a mouse model of SK-N-DX neu-
roblastoma, cisplatin was effective in reducing tumor 
burden. However, the specific mechanism underly-
ing its action in this model was not investigated [176]. 
5-FU, a chemotherapeutic agent, exerts its effects by 
targeting thymidylate synthase and depleting myeloid 
suppressive cells. In a syngeneic neuroblastoma mouse 
model, treatment with 5-FU resulted in a reduction of 
 CD11b+ cells within the tumor and enhanced the effi-
cacy of anti-GD2 antibodies [164]. Furthermore, deple-
tion of MDSCs following 5-FU treatment improved the 
inhibitory effect of recipient leukocyte infusion on local 
tumor growth in murine neuroblastoma (Neuro2A)-
bearing chimeras [177].

Importantly, it should be noted that one of the current 
chemotherapy regimens COJEC, has been associated 
with the induction of M2 macrophages in MYCN-ampli-
fied neuroblastoma [185]. Similarly, a neuroblastoma 
PDX model demonstrated that macrophage infiltration 
promoted the outgrowth of tumor cells that had sur-
vived COJEC-like chemotherapy. Consequently, the 
COJEC regimen could contribute to the development of 
resistance to anti-GD2 therapy in neuroblastoma and T 
cell-based therapeutics. Currently, the COJEC regimen, 
consisting of cisplatin, vincristine, carboplatin, etoposide, 
and cyclophosphamide, is frequently applied [186]. From 
a clinical point of view there is a strong wish to add anti-
GD2 therapy during induction chemotherapy. Therefore, 
it could be important to explore alternative chemothera-
peutic regimens that can synergize with immunotherapy.

Inhibition of cytokines
As described above, IL-6 stimulation and STAT sign-
aling in myeloid cells are associated with immunosup-
pressive characteristics, including Arg-1 expression. 
STAT3 inhibition with AZD1480 or ruxolitinib reduced 
TAM-mediated MYC upregulation, restraining NBT2 
tumor growth in NB-tag and NSG mice [88]. Moreo-
ver, Ara et al. demonstrated that IL-6 from monocytes 
activated STAT3 in neuroblastoma cells, causing drug 
resistance against etoposide and melphalan in  vitro, 
which was counteracted by STAT3 inhibition or knock-
down [178]. Studies in other cancer types suggest that 
STAT3 inhibition impedes the local proliferation of 
TAMs, thereby reducing their abundance within the 
tumor [187]. Furthermore, Louault et  al. showed that 
IL-6 produced by MSC and neuroblastoma cells pro-
moted the survival of TAMs ex vivo [95]. Apoptosis of 
TAMs was observed upon blocking the IL-6 receptor 
using the monoclonal antibody Tocilizumab. Upstream, 
TGF-β stimulated IL-6 production in neuroblastoma 
cells and MSC, contributing to the suppression of NK 
cell cytotoxic activity. Treatment with Galunisertib, a 
TGF-βR1 inhibitor, decreased IL-6 production in co-
cultures and restored the activity of NK cells. There-
fore, targeting the IL-6/TGF-β axis holds promise as a 
strategy to selectively deplete TAMs from the neuro-
blastoma TME.

Blocking recruitment of myeloid cells
Rather than eradicating the myeloid compartment 
entirely, an alternative strategy involves impeding 
myeloid cell recruitment to the tumor site. Overex-
pressed COX enzymes in neuroblastoma drive myeloid 
cell attraction by synthesizing prostaglandins, includ-
ing  PGE2 [55, 188, 189]. Blocking COX with aspirin in 
TH-MYCN mice led to diminished tumor burden and 
reduced tumor-associated myeloid cells like MDSCs, 
immature DCs, and TAMs [55, 180].

The CCL2/CCR2 axis is pivotal for recruiting mono-
cytes, myeloid cells, and plasmacytoid DCs in MYCN-
nonamplified neuroblastoma [89]. In other cancer types, 
inhibiting the CCL2/CCR2 axis with CCR2 inhibitors or 
anti-CCL2 antibodies has demonstrated reduced myeloid 
cell recruitment and improved clinical outcomes [190–
192]. Sphingosine-1 (S1P), a bioactive lipid, induced 
CCL2 expression in neuroblastoma via S1P2 [181]. Inhib-
iting S1P2 with the stable derivative AB1, but not its pre-
cursor JTE-013, decreased macrophage infiltration in 
neuroblastoma xenografts, underscoring AB1’s potential 
to inhibit TAM infiltration [182].

Furthermore, certain chemotherapeutic and immu-
notherapeutic drugs impact immune cell recruitment 
to tumors. For example, anti-TGF-β reduced M2 TAM 
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recruitment in a neuroblastoma model, and low-dose 
oxaliplatin hindered neutrophil migration to tumors [179].

While depleting or blocking myeloid cells has been 
proven effective in neuroblastoma, it also depletes 
potential immunotherapy effectors. Additionally, target-
ing specific cytokines or immunosuppressive mediators 
produced by MDSC can be useful, but this only targets 
a small part of the problem. Reprogramming suppressive 
myeloid cells may be the optimal strategy, interrupting 
immunosuppressive traits while preserving myeloid cells 
as effectors of immunotherapy.

Reprogramming suppressive myeloid cells into an active 
phenotype
Finally, a highly elegant approach to target immunosup-
pressive myeloid cells involves reprogramming their 
suppressive phenotype into an antitumor, immunostim-
ulatory state (Table  3). Various published therapeutic 
approaches have demonstrated successful myeloid cell 
reprogramming with consequent T cell activation. For 
instance, ibrutinib, an irreversible molecular inhibitor 
of Bruton’s tyrosine kinase (BTK), was shown to reverse 
T cell suppression mediated by murine MDSC in a neu-
roblastoma mouse model [193]. This was evidenced by 
altered NO production and decreased mRNA expression 
of immunosuppressive factors Ido, Arg, and Tgfb. Moreo-
ver, ibrutinib-mediated BTK inhibition increased  CD8+ 
T cell infiltration and enhanced response to anti-PD-L1 
checkpoint inhibitor therapy. As previously discussed, 
neuroblastoma-derived factors hinder early myeloid cell 
differentiation to monocytes and macrophages, promot-
ing monocyte suppressive function via M-CSF/CSF-1R 
interaction [57]. CSF-1R inhibitor BLZ945 effectively 
blocked CSF-1R-expressing suppressive myeloid cell 
generation and reversed tumor-educated monocyte sup-
pression. Combining CSF-1R inhibition with anti-PD-1/
PD-L1 immune checkpoint blockade in TH-MYCN mice 
enhanced activation of tumor-reactive T cells. Interest-
ingly, PD-1 blockade induced enhanced T cell M-CSF 
secretion, enhancing monocyte suppressive capacity 
[194]. Thus, BLZ945-CSF-1R inhibition combined with 
PD-1 blockade synergistically controlled tumor growth. 
Additionally, catechins such as Polyphenon E exhibit 
neuroblastoma anticancer effects by inhibiting MDSC 
activity. Administered via drinking water in multiple 
neuroblastoma mouse models, Polyphenon E hindered 
MDSC development and mobility, and facilitated their 
differentiation into neutrophils through 67  kDa laminin 
receptor signaling and G-CSF induction [65]. Moreo-
ver, it lowered Arg-1 expression on MDSCs, promoting 
T cell proliferation in patient metastases. Another treat-
ment strategy that potentiates T cells by reprogramming 
myeloid cells is addition of neutrophil-activating protein 

(NAP) in therapies like CAR T cell or oncolytic virus 
treatments. Tumino et al. reported an increase in circu-
lating PMN-MDSC numbers upon GD2.CAR T-cell ther-
apy [195]. Circulating PMN-MDSCs inversely correlated 
with GD2.CAR T-cell levels, potentially predicting treat-
ment response. Moreover, Stroncek et  al. demonstrated 
that monocytes inhibit the expansion of GD2.CAR T 
cells in neuroblastoma patients [196]. In accordance 
with this, GD2.CAR T cells were ineffective in a synge-
neic NXS2 neuroblastoma model. However, GD2.CAR T 
cells designed to express NAP delayed tumor outgrowth 
by generating a ‘hot’ TME with high infiltration of neu-
trophils, M1 macrophages, NK cells,  CD8+ T cells, DCs, 
and a reduced number of Tregs [197], which potentiated 
GD2.CAR T cell therapy. Likewise, oncolytic virus ther-
apy can be enhanced by incorporating NAP into the virus 
load. Oncolytic Vaccinia viruses carrying a GD2 mimo-
tope were ineffective against NXS2 tumors, but the inclu-
sion of NAP led to tumor growth inhibition [198].

Other studies did report strategies to reprogram mye-
loid cells, but did not observe or investigate the indirect 
effects on T cells. COX inhibitors have shown promise in 
limiting myeloid infiltration by inhibiting  PGE2, but their 
use is constrained by potential side effects. An alternative 
approach by Kock et  al. selectively targeted microsomal 
prostaglandin E synthase-1 (mPGES-1) using a small 
molecule inhibitor in an immunocompetent transgenic 
neuroblastoma mouse model with MYCN oncogene 
expression [199]. This targeted inhibition of mPGES-1 
suppressed  PGE2 production specifically in CAFs, result-
ing in reduced tumor growth, impaired angiogenesis, and 
macrophage polarization towards a pro-inflammatory 
M1 phenotype. In addition, human FABP4-expressing 
macrophages were discovered to promote migration, 
invasion, and tumor growth of neuroblastoma cell lines 
[204]. This was facilitated through FABP4 binding to 
ATPB, which triggered ATPB ubiquitination, reduced 
ATP levels, and deactivated the NF-kB/RelA-IL-1a 
pathways, driving macrophages into an M2 phenotype. 
Blocking antibodies against IL-1a effectively countered 
FABP4-induced increased migration and invasion. Ligat-
ing CD40 offers another approach to target myeloid cells, 
as it activates antigen-presenting cells including mac-
rophages. In murine NXS2 models, anti-CD40 treatment 
led to delayed tumor progression by inducing a proin-
flammatory M1 phenotype in macrophages and stimulat-
ing Th1 cytokine production [205]. This treatment also 
synergized with CpG-containing oligodeoxynucleotides 
(CpG), promoting upregulation of intracellular Toll-like 
receptor (TLR)-9 and generating NO, IFNγ, TNFα, and 
IL-12 in A/J mice bearing NXS2 tumors [206]. When 
combined with multidrug chemotherapy, radiation, anti-
GD2, and anti-CTLA-4, this anti-CD40 and CpG therapy 
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exhibited potent anti-tumor effects in mice with 9464D 
neuroblastoma tumors, repolarizing TAMs towards an 
M1 phenotype [161]. Furthermore, histone deacetylase 
(HDAC) inhibitors have been explored in cancer ther-
apy due to their ability to prevent histone deacetylation, 
resulting in altered gene and protein expression [212]. 
In neuroblastoma, the HDAC inhibitor vorinostat has 
shown enhanced efficacy in combination with anti-GD2 
antibody treatment in a TH-MYCN mouse model [200]. 
Vorinostat treatment increased GD2 expression in neu-
roblastoma tumors, improving responsiveness to anti-
GD2 therapy. It also modified the myeloid composition 
of the TME, enhancing TAMs with mixed M1 and M2 
phenotypes while reducing M-MDSC. Vorinostat-treated 
TAMs exhibited heightened ADCC capability, downreg-
ulated immunosuppressive genes, and upregulated FcyRI 
and FcyRII/III. Although clinical trials are lacking, the 
combination of anti-GD2 therapy and vorinostat holds 
promise for neuroblastoma treatment. Vorinostat was 
well-tolerated in a phase I trial with isotretinoin [201] 
and showed favorable response rates in a phase II trial 
with 131I-metaiodobenzylguanidine (MIBG) [202].

Furthermore, several therapeutic strategies have been 
reported that suggest alteration of gene expression of 
tumor cells or macrophages as a promising strategy to 
reprogram myeloid cells. BET bromodomain inhibitors 
like JQ1 and I-BET726 displace BRD4 from the MYCN 
promoter, leading to improved survival in various in vivo 
neuroblastoma models by inhibiting tumor growth and 
MYCN downregulation [209, 210]. Combined PI3K 
and BRD4 inhibition also shows promise, suppressing 
MYCN expression and inhibiting neuroblastoma cell 
growth and metastasis both in  vitro and in  vivo [211]. 
While not investigated in neuroblastoma, PI3K/BRD4 
blockade has demonstrated immunomodulatory effects. 
In tumor-bearing mice, it reduces MDSC recruitment, 
enhances  MHCII+ TAMs with a pro-inflammatory M1 
phenotype, and promotes  CD8+ T cell infiltration and 
activation within the tumor [213]. These findings sug-
gest that aside from MYCN, PI3K/BRD4 blockade may 
influence myeloid cell migration and polarization, poten-
tially contributing to its anti-tumor effects in neuroblas-
toma. Further research is needed to fully understand this 
mechanism. In addition, Rac2, a small GTPase, has been 
linked to the polarization of macrophages from M1 to 
M2 phenotype in  vivo [208]. Rac2-deficient mice stud-
ies indicated that although macrophage infiltration into 
the TME remained unchanged, the absence of Rac2 led 
to a prevalent M1 phenotype in macrophages. In a synge-
neic neuroblastoma (9464D) model, Rac2-deficient mice 
exhibited significantly reduced tumor growth, suggesting 
the contribution of M2 macrophages to tumor progres-
sion. Notably, Rac2 is also implicated in tumor-induced 

angiogenesis, implying that the impact of Rac2 knock-
down on tumor inhibition might involve both M1 mac-
rophage polarization and the suppression of tumor 
angiogenesis. Potential therapeutic strategies involving 
Rac2 inhibition, using inhibitors like NSC23766, wort-
mannin, and LY294002, warrant further exploration in 
neuroblastoma cancer development [214, 215].

Finally, some studies have been published that dem-
onstrate the possibility to target cytokines to reprogram 
myeloid cells. Relation et al. introduced a novel strategy 
involving MSCs engineered to express IFNγ, injected 
directly into neuroblastoma tumors [203]. This led to 
decreased tumor proliferation and improved survival in 
a CHL-255 orthotopic neuroblastoma model, without 
increasing macrophage infiltration, but instead polar-
izing TAMs to an M1 phenotype. Additionally, incubat-
ing neuroblastoma cell lines with human monocytes 
increased IL-1β and TNFα-expressing macrophages, sig-
nifying an M1 phenotype via AKT phosphorylation [45]. 
IL-1β and TNFα from these macrophages stimulated 
arginine metabolism in neuroblastoma cells, promoting 
tumor cell proliferation. AKT inhibition using MK-2206 
halted this effect by blocking IL-1β and TNFα secre-
tion by macrophages. Blocking arginine uptake in tumor 
cells with L-NAME or depleting arginine with BCT-100 
hindered neuroblastoma cell differentiation. BCT-100 
treatment delayed neuroblastoma development in a TH-
MYCN mouse model, prolonging survival. A phase I/
II study with BCT-100 treatment is currently conducted 
in patients with neuroblastoma (NCT03455140). To our 
knowledge, results of this study have not been published 
yet.

Reprogramming the myeloid compartment in neuro-
blastoma offers an elegant strategy, preserving potential 
effector cells. This approach can also indirectly reactivate 
tumor-infiltrating T cells, and enhance T cell therapies, 
such as CAR T cells and checkpoint inhibitors. In addi-
tion to all myeloid-targeting treatments discussed in this 
review, many other treatment strategies are promising, 
but have not yet been studied in neuroblastoma. Some 
examples are the inhibition of myeloperoxidase, pre-
venting lipid peroxidation in PMN-MDSC, inhibition of 
fatty acid transport protein 2 (FATP2), preventing uptake 
of arachidonic acid and synthesis of  PGE2, DR5 ago-
nists inducing MDSC apoptosis via TNF-related apop-
tosis-inducing ligand (TRAIL) and inhibition of Arg-1 
[216–219]. Strategies involving IDO, NO, or TOLLIP 
inhibition, ATRA treatment or other HDAC inhibitors 
than vorinostat, such as entinostat and ricolinostat were 
proven effective as well and are thoroughly reviewed 
elsewhere [28, 220–222]. These approaches hold oppor-
tunities for new neuroblastoma treatments, and should 
be further investigated in the future.
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Discussion
As in other solid tumors, the presence of neutrophils, 
MDSCs and macrophages in neuroblastoma is generally 
associated with worse survival and immunosuppression. 
Neutrophils appear to be associated with a worse prog-
nosis in high-risk neuroblastoma, though exact mecha-
nisms remain unknown and are obscured by changing 
nomenclature, with (suppressive) neutrophils now often 
referred to as PMN-MDSC. It is clear that MDSC are 
immunosuppressive in both patients and in mouse mod-
els. Interestingly, we observed that M-MDSC were more 
immunosuppressive than PMN-MDSC in mouse models, 
but due to limited patient studies it is uncertain whether 
this is the case in neuroblastoma patients as well. Regard-
ing macrophages, research findings diverge. While some 
noted M2 macrophage induction by neuroblastoma, 
others primarily observed M1 macrophages, with both 
types potentially linked to poor clinical outcome. These 
discrepancies likely stem from distinct genetic profiles 
within neuroblastoma; tumors with chromosome 11q 
deletion or MYCN amplification tend to favor M2 phe-
notypes, whereas MYCN-nonamplified tumors have a 
higher prevalence of M1 macrophages [21, 72, 73, 85].

Because of their immunosuppressive nature and asso-
ciation with disease progression, myeloid cells are an 
excellent target for immunotherapy. Interestingly, immu-
nosuppressive myeloid cells can still be engaged as effec-
tor cells, as is illustrated by the fact that neutrophils are 
important effector cells in anti-GD2 antibody therapy. 
This major role for neutrophils appears to be specific 
for anti-GD2 immunotherapy and/or neuroblastoma 
since neutrophils are much less involved as effectors of 
IgG antibody therapy in other cancers. One potential 
explanation for this phenomenon could be the timing of 
immunotherapy, often administered shortly after ASCT 
(90–120  days). Neutrophils, being highly abundant and 
among the first immune cells to recover post-ASCT, 
may possess a relative advantage compared to immune 
cells such as NK cells [223]. Additionally, post-ASCT NK 
cell recovery revealed a sustained enhanced metabolic 
immune cell profile relative to pre-ASCT levels in mul-
tiple myeloma patients [224, 225]. This is accompanied 
by a shift in NK cell subset distribution, correlating with 
reduced progression-free survival. These findings imply 
long-lasting ASCT-induced impacts on NK cell function.

In summary, substantial effort is put in developing T 
cell- and NKT cell-based therapeutics for neuroblastoma, 
among which CAR T cells and PD1/PD-L checkpoint 
inhibitors are the most prominent. However, results have 
been disappointing, apart from a breakthrough regard-
ing GD2.CAR T cells for neuroblastoma patients with 
low tumor burden [14]. For adaptive immunity to be 
restored in neuroblastoma, first the immunosuppressive 

myeloid cells must be tackled. In this review, we high-
lighted several myeloid-targeting strategies that restored 
the ability of T cells to kill tumor cells, including deple-
tion of myeloid cells using anti-Ly6G, anti-CD33 or the 
BTK inhibitor ibrutinib and myeloid reprogramming 
by DOX chemotherapy, anti-CSF1R, administration of 
Polyphenon E, or the addition of NAP to therapies. The 
combination of myeloid-targeting drugs and T cell-based 
therapeutics for neuroblastoma holds great promise for 
the future.
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CpG  CpG-containing oligodeoxynucleotides
CR3  Complement receptor 3
CSF-1R  Colony stimulating factor 1 receptor
CXCR  C-X-C motif chemokine receptor
DC  Dendritic cells
DOX  Doxorubicin
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Mac-1  Membrane-activated complex 1
MDSC  Myeloid-derived suppressor cells
mPGES-1  Prostaglandin E synthase-1
MSC  Mesenchymal stromal cells
NA-NB  MYCN non-amplified neuroblastomas
NAP  Neutrophil-activating protein
NET  Neutrophil extracellular traps
NK  Natural killer
NKT  Natural killer T
NLR  Neutrophil-to-lymphocyte ratio
NO  Nitric oxide
OS  Overall survival
PAD  Peptide arginine deiminase
PBMC  Peripheral blood mononuclear cells
PDX  Patient-derived xenograft
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PMN  Polymorphonuclear cells
PMN-MDSC  Polymorphonuclear myeloid-derived suppressor cells
ROS  Reactive oxygen species
S1P  Lipid sphingosine-1
SIRPα  Signal regulatory protein alpha
TAMs  Tumor-associated macrophages
TGF-β  Transforming growth factor beta
TILs  Tumor-infiltrating lymphocytes
TLR  Toll-like receptor
TME  Tumor microenvironment
TNFα  Tumor necrosis factor alpha
VEGF  Vascular endothelial growth factor
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