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three SN-38 resistant human colon cancer
cell lines reveals a new pair of resistance-
associated mutations
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Abstract

Background: DNA topoisomerase I (Top1) is a DNA unwinding protein and the specific target of the camptothecin
class of chemotherapeutic drugs. One of these, irinotecan, acting through its active metabolite SN-38, is used in the
treatment of metastatic colorectal cancer. However, resistance to irinotecan represents a major clinical problem.
Since molecular alterations in Top1 may result in resistance to irinotecan, we characterized Top1 in three human
colon cancer cell lines with acquired resistance to SN-38.

Methods: Three SN-38 resistant (20–67 fold increased resistance) cell lines were generated and compared to wild-
type parental cells with regards to: TOP1 gene copy number and gene sequence, Top1 expression (mRNA and
protein), Top1 enzymatic activity in the absence and presence of drug, and Top1-DNA cleavage complexes in drug
treated cells. TOP1 mutations were validated by PCR using mutant specific primers. Furthermore, cross-resistance to
two indenoisoquinoline Top1-targeting drugs (NSC 725776 and NSC 743400) and two Top2-targeting drugs
(epirubicin and etoposide) was investigated.

Results: Two of three SN-38 resistant cell lines carried TOP1 gene copy number aberrations: A TOP1 gene copy gain
and a loss of chromosome 20, respectively. One resistant cell line harbored a pair of yet unreported TOP1 mutations
(R364K and G717R) in close proximity to the drug binding site. Mutant TOP1 was expressed at a markedly higher
level than wild-type TOP1. None or very small reductions were observed in Top1 expression or Top1 activity in the
absence of drug. In all three SN-38 resistant cell lines Top1 activity was maintained in the presence of high
concentrations of SN-38. None or only partial cross-resistance were observed for etoposide and epirubicin,
respectively. SN-38 resistant cells with wild-type TOP1 remained sensitive to NSC 743400, while cells with mutant
TOP1 was fully cross-resistant to both indenoisoquinolines. Top1-DNA cleavage complex formation following drug
treatment supported the other findings.

Conclusions: This study adds to the growing knowledge about resistance mechanisms for Top1-targeting
chemotherapeutic drugs. Importantly, two yet unreported TOP1 mutations were identified, and it was underlined
that cross-resistance to the new indenoisoquinoline drugs depends on the specific underlying molecular
mechanism of resistance to SN-38.
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Background
In metastatic colorectal cancer (mCRC), current chemo-
therapeutic treatment options consist of either 5-
fluorouracil and folinic acid with oxaliplatin (FOLFOX) or
5-fluorouracil and folinic acid with irinotecan (FOLFIRI)
[1, 2]. However, the response rate to these regimens is
only in the range of about 30–55 %. Resistance to chemo-
therapy and drug-induced side effects are major limita-
tions [3, 4], and the 5-year survival rate is less than 10 %
[5]. One way to improve therapeutic efficacy is to intro-
duce biomarkers to identify patients with a high likelihood
of benefiting from drug treatment (see e.g. [6, 7]).
Irinotecan belongs to the camptothecin class of che-

motherapeutic drugs and is a pro-drug of the active
metabolite SN-38. Camptothecins selectively target
DNA topoisomerase I (Top1)-DNA cleavage complexes
which form in the vicinity of replication and transcrip-
tion complexes to unwind DNA [8–10]. Top1 is a 765
amino acid residue protein encoded by the 21-exon
gene, TOP1 located on the long arm (q) of chromosome
20. Top1 binds supercoiled DNA, nicks a DNA strand
allowing its rotation around the intact strand, and then
religates the DNA [8, 11]. Camptothecins bind and
stabilize the Top1-DNA cleavage complexes, thus lead-
ing to DNA damage when replication or transcription
occurs [8]. Similarly, DNA topoisomerase II (Top2) is
the target of other classes of chemotherapeutic drugs,
including the anthracylines and etoposide [8, 12, 13].
As Top1 is the direct target of SN-38, the active me-

tabolite of irinotecan, it has been extensively studied as a
possible mediator of resistance or as a predictive marker
in mCRC. Top1 can be examined in several different
ways; gene copy number aberrations and genetic muta-
tions, mRNA and protein expression levels, and enzyme
activity levels (see e.g. [6]). Studies have been performed
both at the pre-clinical cellular level (e.g. [14–17]) and
using clinical tumor samples (e.g. [17–20]). Positive cor-
relation between Top1 protein level and gene copy num-
ber or mRNA level has been observed in several studies
[14, 21, 22]. In cell-based studies, high Top1 expression
and enzyme activity have generally been associated with
sensitivity to camptothecins, whereas low Top1 is a
common resistance mechanism [15, 16, 23–26]. In
addition, mutations or DNA methylation of the TOP1
gene have been associated with resistance to camptothe-
cins [27, 28]. Most mutations have been identified in
cultured cells [27], and rarely in clinical patient material
[29]. The largest clinical study investigating Top1 as a
predictive marker of irinotecan treatment in mCRC to
date is the UK FOCUS trial [18, 30]. High tumor Top1
protein expression was found to correlate significantly
with therapeutic benefit from irinotecan. However, a
similar study, the Dutch CAIRO trial [31, 32], was not
able to replicate this finding.

In recent years, new classes of non-camptothecin
Top1-targeting drugs have reached clinical development,
e.g. the indenoisoquinolines, the dibenzonaphtyridinones
and the indolocarbazoles [8, 33, 34]. Compared to camp-
tothecins, indenoisoquinoline drugs are chemically
stable, bind Top1-DNA cleavage complexes at other
DNA sequences, form less reversible drug-Top1-DNA
cleavage complexes and are not substrates of common
multi-drug resistance efflux pumps [34, 35].
In the present study we undertook a thorough investiga-

tion of the Top1 status in three human colon cancer cell
lines with acquired resistance to SN-38 developed through
approximately 9 months of drug exposure [36]. We inves-
tigated the Top1 gene copy number, genetic sequence,
mRNA expression level, protein expression level, enzyme
activity and formation of Top1-DNA cleavage complexes
following drug treatment. In addition we tested the cross-
resistance to two non-camptothecin Top1-targeting drugs
as well as two drugs targeting Top2.

Methods
Cell culture
The cell lines HCT116 and HT29 were obtained from the
NCI/Development Therapeutics Program, while LoVo was
obtained from the American Tissue Culture Collection.
Cells were maintained at 37 °C, 5 % CO2 in RPMI 1640 +
Glutamax growth medium (Invitrogen, Nærum, Denmark)
supplemented with 10 % fetal calf serum (Invitrogen). SN-
38 resistant cell lines were generated in our laboratory by
exposing three colon cancer cell lines to gradually increas-
ing drug concentrations for 8–10 months [36]. The cells
were maintained in drug-free growth medium for at least
1 week and at most 4 weeks prior to any experiments.

Chemotherapeutic drugs
SN-38 (Sigma-Aldrich, Copenhagen, Denmark) was
purchased and dissolved in dimethyl sulfoxide (DMSO)
at a concentration of 10 mM and stored at -20 °C. The
indenoisoquinoline drugs NSC 725776 (LMP776) and
NSC 743400 (LMP400), provided by the laboratory of
Dr. Yves Pommier, were dissolved in DMSO at a con-
centration of 5 mM and stored at -20 °C. Epirubicin
(2 mg/ml, Actavis Nordic A/S, Gentofte, Denmark) and
etoposide (20 mg/ml, Pfizer, New York, USA) were pur-
chased and stored at -20 °C. Drugs were diluted in
growth medium immediately prior to use.

Drug sensitivity MTT assay
In vitro drug sensitivity was determined using the MTT
(methylthiazolyldiphenyl-tetrazolium bromide) assay. Cells
were seeded in 96-well plates, and a range of drug concen-
trations was added the following day. Following 48 h of
drug exposure, the medium was discarded and the plates
were incubated with medium containing MTT (0.5 mg/ml,
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Sigma-Aldrich) for 3 h. Acidified (0.02 M HCl) sodium
dodecyl sulphate (20 %, Sigma-Aldrich) was added to
dissolve the formed formazan. Optical density at 570 nm
(and 670 nm for background) was measured, and the cell
viability was calculated in percent compared to untreated
cells. Experiments were repeated three times and the mean
IC50-value ± standard deviation was determined. Relative
resistance for each resistant cell line was calculated by div-
iding the mean IC50-value of the resistant cell line by the
mean IC50-value of the corresponding parental cell line.

RNA purification and mRNA analysis
The RNA purification and TOP1 mRNA analysis is
previously described [36]. Briefly, RNA was harvested
from each cell line in triplicate using TRIzol Reagent
(Invitrogen) and quantified using a Nano-Drop ND-
1000 (Thermo Scientific, Waltham, USA). The Top1
mRNA level was obtained from a gene expression micro-
array analysis (Human Gene Expression Microarrays
G4112F, Agilent Technologies, Santa Clara, USA) done in
triplicate calculating mean ± standard deviation.

Metaphase preparation
Metaphase preparation has previously been described
[37]. Briefly, upon reaching a confluence of approxi-
mately 70 %, colcemid (Invitrogen) was added to cell
cultures. After 2 h at 37 °C, cells were harvested and a
hypotonic treatment was performed (0.075 M KCl) for
10 min. Cells were fixed (fixative: 3:1 vol/vol absolute
methanol and glacial acetic acid) and the suspension was
dripped onto glass slides.

Fluorescence-in-situ-hybridization (FISH) gene copy
number analysis
The TOP1/Centromere-20 (CEN-20) probe combination
and relevant protocol has previously been described [17].
FISH reagents were from the Cytology FISH Accessory Kit
(K5499) and the Histology FISH Accessory Kit (K5799)
(Dako A/S, Glostrup, Denmark). Metaphase specimens
were fixed in 3.7 % formaldehyde, washed, dehydrated and
air dried. Once dry, FISH probe was loaded onto slide,
denatured and hybridized overnight. Excess probe was
removed by washing in stringency buffer. Slides were
washed, dehydrated, air dried and mounted. To determine
the presence and mechanism of TOP1 copy number alter-
ation in cell lines, signal locations and numbers were noted
for 50 metaphases for each cell line at 1000x magnification.

TOP1 DNA sequencing
Six primer sets covering the full coding region of human
TOP1 (NCBI Reference Sequence: NM_003286.2) were
obtained: (1) 5′-CTCAGCCGTTTCTGGAGTCT-3′ (for-
ward) and 5′-TCAGCATCATCCTCATCTCG-3′ (reverse)
(593 bp); (2) 5′-CGAAAAGAGGAAAAGGTTC-3′ and

5′-GGGCTCAGCTTCATGACTTT-3′ (488 bp); (3) 5′-
CCACCATATGAGCCTCTTCC-3′ and 5′-CCTTGTTAT
CATGCCGGACT-3′ (544 bp); (4) 5′-AGAGCCTCCTG
GACTTTTCC-3′ and 5′-GACCATCCAACTCTGGGTG
T-3′ (497 bp); (5) 5′- TTCGTGTGGAGCACATCAAT-3′
and 5′-GACCTTGGCATCAGCCTTAG-3′ (503 bp); (6)
5′-CGAGCTGTTGCAATTCTTTG-3′ and 5′-ACCACA
CTGTTCCTCTTCAC-3′ (472 bp). The primer sequences
were obtained from [38] and primers purchased from
Eurofins MWG Operon (Ebersberg, Germany). Total
RNA was purified from cells as described above and
converted to cDNA (SuperScript VILO cDNA Synthesis
Kit, Invitrogen) according to the manufacturer’s in-
structions, using 100 ng RNA for each reaction. PCR
products were amplified (HotStarTaq Master Mix Kit,
Qiagen, Venlo, Netherlands) using the six primer sets
described above. PCR products were assessed on a
1.5 % agarose gel (electrophoresis: 120 V, 2 h) and di-
luted to approximately 10 ng/μl. PCR products were
shipped to and sequenced in both directions using the
above mentioned forward and reverse primers by a com-
pany (Prepaid Plate Kit PCR Products, Eurofins MWG
Operon). PCR products containing identified mutations
were re-sequenced once. Sequences were compared be-
tween cell lines using multiple sequence alignment (Clustal
Omega tool, EMBL-EBI, www.ebi.ac.uk).

PCR validation of TOP1 mutations
Primers with similar melting temperatures specific for
wild-type (wt) or mutant (mt) sequences were designed:
5′-GGACTTTTCCGTGGCC-3′ (364wt, forward); 5′-
TGGACTTTTCCGTGGCT-3′ (364mt, forward); 5′-
GATAATTGAGTTTGGAGGTTCC-3′ (717wt, reverse);
5′-CAGATAATTGAGTTTGGAGGTTCT-3′ (717mt,
reverse). 364 and 717 refers to the amino acid residue
positions of the mutations. The mutated nucleotides are
underlined in the primer sequences. The primers were
purchased from Eurofins MWG Operon. cDNA from
cell lines were prepared as described above, and PCR
products were amplified as described above using com-
binations of the wild-type and mutation specific primers.
PCR products (10 μl per sample) were loaded on a 2 %
agarose gel along with a DNA ladder (MassRuler DNA
Ladder, Low Range, Fermentas, Thermo Scientific) and
negative controls (PCR reactions run on RNAse-free
water). Gel electrophoresis was done as described above
and the gel was photographed under UV illumination.

Protein purification and Western blotting
Cells were trypsinized, resuspended and washed in
cold PBS and pellet frozen at -80 °C. Cell pellets were
resuspended in lysis buffer [1 % SDS, 10 mmol/L Tris
(pH 7.4), 40 μL of 25x protease inhibitors (Roche,
Basel, Switzerland), 10 μL phosphatase inhibitors
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(Sigma), 1 mL water]. Samples were sonicated (15 s),
kept for 5 min on ice and heated for 5 min at 95 °C.
Total protein was determined using the Lowry
method, i.e. absorbance measurement and using a
standard curve of bovine serum albumin in sample
buffer. Samples were diluted and 10 μg of total protein
per sample were applied on a 4–20 % gradient gel
(Novex, Invitrogen) together with a marker (SeaBlue
Plus2 Pre-Stained Standard, Invitrogen), and subjected
to electrophoresis (120 V, 1.5–2 h). Gel was trans-
ferred to a polyvinylidene difluoride (PVDF) mem-
brane by semi-dry blotting 5 V overnight. Membrane
was blocked for 1 h at room temperature in 5 % milk
in PBS-Tween20 buffer. Subsequently, the membrane
was stained with primary antibody, either anti-Top1
(C21, 1:1000, BD Biosciences Pharmingen, Franklin
Lakes, NJ, USA) or anti-actin (1:5000, ab3280, Abcam,
Cambridge, UK) (loading control), by incubation over-
night at 4 °C. Membrane was washed three times, and
incubated with HRP-conjugated secondary antibody
(1:10000, sheep anti-mouse, GE Healthcare, Little
Chalfont, UK) for 1 h at 30 °C. Subsequently, the
membrane was washed three times and substrate
(SuperSignal West Pico Chemiluminescent Substrate,
Pierce, Thermo Scientific) was added according to the
manufacturer’s instructions. Signal was developed in
the dark room using a photographic film. Western
blots were replicated.

Top1 ELISA assay
Cells were trypsinized, resuspended and washed in cold
PBS and pellet frozen at -80 °C. The Top1 ELISA was
performed as previously described [39]. Cell pellets were
sonicated in lysis buffer and protein concentration was
determined by BCA assay. Mouse anti-Top1 monoclonal
antibody clone C21.1 (BD Biosciences Pharmingen, 1:1000),
was used as the capture antibody. Pure rTop1 (EMD
Biosciences, Inc.) was used as to make the standards. Sam-
ples and standards were diluted in PBS-casein and incu-
bated overnight at 2 °C to 8 °C. Rabbit anti-Top1 polyclonal
antibody Ab28432 (Abcam, 1:500 in PBS-casein) was used
as the probe followed by the addition of extra serum-
absorbed goat-anti-rabbit horseradish peroxidase conjugate
(KPL, 1:1000). Probe antibody and HRP-conjugate were
pre-incubated with mouse serum (Sigma Aldrich, 1:1000)
to lower background signal. Finally, Pico-ELISA substrate
(Thermo Scientific Pierce) was added and chemilumines-
cence was measured on an Infinite 200 M (Tecan Group
Ltd.). Top1 levels were normalized to 1 μg protein load.

Top1 enzyme activity assay
Cells were trypsinized, resuspended and counted, and for
each cell line 1 million cells were pipetted to each of three
eppendorf tubes on ice. Cells were pelleted (5 min

centrifugation, 300 g, 4 °C) and snap-frozen in dry ice and
ethanol and stored at -80 °C until analysis. Nuclear extracts
were prepared essentially as previously described [40], and
Top1 activity measured in titration experiments with
or without added SN-38 (at concentrations stated in
the text) using the standard Rolling circle Enhanced
Enzyme Activity Detection (REEAD) protocol as pre-
viously described [40, 41]. The activity was calculated
in terms of numbers of Top1 specific signals relative
to the amount of signals resulting from the addition a
known concentration of control circles, as previously
described [40].

Drug treatment and detection of Top1-DNA cleavage
complexes using alkaline elution
Top1-DNA cleavage complexes (DPCs) were detected
using alkaline elution as previously described [42]. In
brief, cells seeded in flasks were radiolabeled overnight
with 0.02 μCi/ml [14C]thymidine and chased with
radioisotope-free medium 4 h before drug treatment.
Cells were treated with either SN-38 (10, 1 or 0.1 μM)
or NSC 743400 (1 μM) for 1 h. Untreated cells were
included as controls. Cells were harvested by scraping
and quickly pipetted to tubes on ice. Cell aliquots
were placed in ice-cold PBS and irradiated with
3000 rad to break the DNA. Cells were layered onto
polyvinylchloride-acrylic copolymer (protein adsorb-
ing) filters and lysed with LS-10 (2 M NaCl, 0.2 % sar-
kosyl, and 0.04 M disodium EDTA, pH 10). DNA was
eluted from the filters with tetrapropylammonium
hydroxide-EDTA (pH 12.15). After elution, filters were
incubated for 1 h at 65 °C with 1 M HCl and an add-
itional hour at room temperature in the presence of
0.4 M NaOH. Radioactivity in fractions and filters was
measured with a liquid scintillation analyzer (2200A
Tri Carb Scintillation Analyzer, Packard Instruments,
Meridien, USA) and the fraction of DNA retained on
the filter at each time point was calculated. The results
were converted to rad-equivalent (a measure of DNA-
protein crosslinks). Experiments were done twice each
with two technical replicates.

Statistical analyses
mRNA expression values in triplicate was compared be-
tween corresponding parental and resistant cell lines
using unpaired Student’s t-tests. Formation of DNA
crosslinks in different cell lines following drug treatment
(either SN-38 or NSC 743400; 1 μM) was compared
using paired Student’s t-tests. A p-value less than 0.05
was considered significant.

Bioinformatics analysis of identified TOP1 mutations
The evolutionary conservation of selected amino acids
in the Top1 protein was analyzed across seven different

Jensen et al. Journal of Experimental & Clinical Cancer Research  (2016) 35:56 Page 4 of 14



species (human, rhesus macaque, mouse, cow, frog,
zebrafish and arabidopsis) using multiple sequence align-
ment (Clustal Omega tool, EMBL-EBI, www.ebi.ac.uk).

Results
Colon cancer cell lines resistant to SN-38
SN-38 resistant human colon cancer cell lines were gener-
ated from the three human colon cancer cell lines
HCT116, HT29 and LoVo by approximately 9–10 months
exposure to increasing concentrations of SN-38 [36].
Resistance to SN-38 in these cell lines were 67-, 55- and
20-fold, respectively, when comparing IC50-values for
HCT116-SN38, HT29-SN38 and LoVo-SN38 to IC50-
values of their the corresponding parental cell lines
HCT116-Wt, HT29-Wt and LoVo-Wt [36].

TOP1 gene copy number aberrations in SN-38 resistant
cells identified by FISH
TOP1 gene copy number was determined using a TOP1/
CEN-20 FISH probe combination, where CEN-20 is used
as a reference (TOP1 is located at 20q12-q13.1), in both
the parental and resistant cells (see Table 1 and Fig. 1).
LoVo-Wt and HCT116-Wt, both had two normal copies
of chromosome 20, generating two TOP1 and CEN-20
signals. In HCT116-SN38, 46 % of scored metaphases
harbored two normal copies of chromosome 20, whereas
in the remaining 54 %, an additional TOP1 signal was
observed on a chromosome that did not contain a CEN-
20 signal. No aberrations were detected in the LoVo-
SN38 cell line. In HT29-Wt, three normal copies of
chromosome 20 were detected, along with four TOP1
signals surrounding CEN-20, indicative of 20q isochro-
mosome formation. A similar pattern was observed in
HT29-SN38; however only two copies of chromosome
20 were detected, indicating a chromosome 20 loss.
Additionally, a CEN-20 signal was detected in a chromo-
some without TOP1 signal. It should be noted that this
signal was observed outside of the centromere on this
unknown chromosome (see Fig. 1).

TOP1 sequencing reveals a yet unreported pair of highly
expressed mutations in SN-38 resistant cells
The DNA sequence of the full coding region of TOP1 in
parental and SN-38 resistant cells were obtained by PCR
amplification using six primer sets followed by bidirec-
tional sequencing of the PCR products. Sequences of
corresponding parental and resistant cells were compared
to identify acquired mutations in TOP1 (see Table 2). No
mutations were detected in HT29-SN38 or LoVo-SN38. In
HCT116-SN38 two non-synonymous, heterozygous muta-
tions were detected, namely c.1336C >T (corresponding to
R364K, arginine to lysine change) and c.2395G >A (corre-
sponding to G717R, glycine to arginine change) (see Fig. 2a
for sequencing chromatograms). These mutations were

confirmed by re-sequencing. Multiple sequence alignment
demonstrated the mutations to correspond to evolutionar-
ily conserved residues (data not shown). R364 was con-
served in seven of seven analyzed species, while G717 was
conserved in six of seven species (all except zebrafish;
S717).
The identified TOP1 mutations were validated using

PCR primers designed to be specific for wild-type (wt)
or mutant (mt) sequences at amino acid residue posi-
tions 364 and 717 in TOP1. A fragment of TOP1 was
amplified by PCR using combinations of primers and
cDNA (made from mRNA) from parental or resistant
cells (see Fig. 2b). Parental HCT116-Wt cells highly
expressed wild-type TOP1 (using wild-type primers at
both positions 364 and 717), while no fragment was
amplified using the combination of mutant primers. A
relatively weak band was seen using 364wt-717mt
primers, which might represent unspecific primer bind-
ing or a weak expression of mutant G717R TOP1 in
parental cells. On the other hand, SN-38-resistant
HCT116-SN38 cells only weakly expressed wild-type
TOP1, while 364mt-717mt and the wt-mt combinations
of TOP1 were highly expressed. Single-mutant (wt-mt
or mt-wt combinations of primers) TOP1 appeared to
be more highly expressed than double-mutant (mt-mt)
TOP1.

Top1 mRNA and protein expression levels show no
difference between parental and SN-38 resistant cells
TOP1 mRNA expression was determined by microarray
analysis [36] (see Fig. 3a). No significant difference in
mRNA level between corresponding parental and resist-
ant cells was observed. In addition, Top1 protein expres-
sion levels, determined by Western blotting and ELISA
(see Fig. 3b and c) were similar in the corresponding
parental and SN-38 resistant cells.

Top1 enzyme activity in the presence of drug is highly
affected in SN-38 resistant cells
The enzymatic activity of Top1 in nuclear extracts
from parental and resistant cells was determined by
the Rolling circle Enhanced Enzyme Activity (REEAD)
assay previously described by Stougaard et al. [41] and
Andersen et al. [40]. Top1 activity in the absence of
drug determined at different dilutions of nuclear ex-
tract was found to be similar or slightly lower in the
SN-38 resistant and corresponding parental cells (see
Fig. 4a). Next, Top1 activity was measured in the pres-
ence of increasing concentrations of SN-38 (see
Fig. 4b). In the parental cells, Top1 activity diminished
with increasing concentrations of SN-38, while the
Top1 activity in the SN-38 resistant cells was largely
maintained with increasing SN-38 concentrations.
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Fig. 1 FISH analysis of TOP1 (red) and CEN-20 (green) aberrations in parental and SN-38-resistant cells. Shown are representative cell metaphase
FISH images of parental (HCT116-Wt, HT29-Wt and LoVo-Wt) and SN-38 resistant (HCT116-SN38, HT29-SN38 and LoVo-SN38) cell lines. HCT116-SN38A
and –B designate the two subpopulations observed in the HCT116-SN38 cell line. See text and Table 1 for details. Note: Due to the existence of two
chromatids in each metaphase chromosome, the observed number of gene signals is double that of what is observed in an interphase nucleus

Table 1 TOP1/CEN-20 FISH analysis

Cell line TOP1 CEN-20 TOP1/CEN-20 ratio Description of aberrationa

HCT116-Wt 2 2 1 None

HCT116-SN38 A: 2, B: 3 A: 2, B: 2 A: 1, B: 1.5 Two subpopulations; A (46 %):
No aberration, B (54 %):
TOP1 gain

HT29-Wt 5 4 1.25 20q isochromosome formation

HT29-SN38 4 4 1 20q isochromosome formation,
loss of chromosome 20
and gain of CEN-20 on
chromosome without TOP1

LoVo-Wt 2 2 1 None

LoVo-SN38 2 2 1 None

Wt (wild-type) designates the parental cell lines
aFor details see text
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Pattern of cross-resistance to non-camptothecin Top1-
targeting drugs and Top2-targeting drugs
The cross-resistance of the SN-38-resistant cells were
determined against two indenoisoquinoline non-
camptothecin Top1-targeting drugs in clinical trial;
NSC 725776 (LMP776/indimitecan) and NSC 743400
(LMP400/indotecan), as well as two drugs targeting
Top2; the anthracycline epirubicin and etoposide (see

Fig. 5). IC50-values and relative resistances are shown
in Table 3, including IC50-values for SN-38 for com-
parison. HCT116-SN38 displayed a strong resistance
to NSC 725776 and NSC 743400, but was sensitive to
epirubicin and etoposide. HT29-SN38 showed a mod-
erate or strong resistance to NSC 725776 and epirubi-
cin, respectively, but was relatively sensitive to NSC
743400 and etoposide. LoVo-SN38 displayed a moder-
ate resistance to NSC 725776 and epirubicin, but was
sensitive to NSC 743400 and etoposide.

Top1-DNA cleavage complexes formed after drug
treatment is altered in SN-38 resistant cells
Parental and SN-38 resistant cells were treated with SN-38
or NSC 743400, and Top1-DNA cleavage complexes were
assessed by alkaline elution (see Fig. 6). Firstly, cells were
exposed for 1 h to SN-38. All three parental cells displayed
a significantly higher number of Top1-DNA cleavage

Fig. 2 TOP1 mutations in HCT116 SN-38 resistant cells. a Location and sequencing chromatograms for the detected TOP1 mutations, R364K and
G717R. Both are heterozygous and detected in the SN-38 resistant HCT116-SN38 cell line. Top1 is a 765 amino acid (aa) residue protein [11, 46].
b Validation of mutations using PCR and combinations of wild-type (wt) and mutant (mt) specific primers at the 364 and 717 amino acid residue
positions of TOP1. Shown is gel electrophoresis of the amplified PCR products. M is the DNA ladder; 1–4 are PCR products made from total cDNA
from the parental HCT116-Wt cell line, and 5–8 are from the SN-38 resistant HCT116-SN38 sub-line. Negative controls (9–12) are the specified primer
combinations. The band representing the amplified fragment of TOP1 cDNA should have a size of 1059 bp [(717-364) x 3 bp per amino acid residue]

Table 2 Mutations in TOP1

Cell line Mutations detecteda Locationb

HCT116-SN38 c.1336C > T (R364K),
c.2395G > A (G717R)

Exon 12, exon 20

HT29-SN38 None -

LoVo-SN38 None -

Both mutations are heterozygous
aComparing sequences of resistant and parental cell lines
bInformation from the NCBI (www.ncbi.nlm.nih.gov)
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Fig. 3 TOP1 mRNA and protein expression in parental and SN-38 resistant cells. a mRNA expression levels (log2 transformed intensities), mean ± standard
deviation. b Representative Western blot using anti-Top1 and anti-actin (loading control) antibodies (10 μg total protein were loaded per sample). c Top1
protein levels measured by ELISA assay

Fig. 4 Enzymatic activity of Top1 in nuclear extract from parental and SN-38 resistant cells. a Top1 activity at different dilutions of nuclear extract
in the absence of SN-38. b Top1 activity measured in the presence of increasing concentrations of SN-38. DMSO is the vehicle control without
SN-38. Mean values ± standard deviations are plotted
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Fig. 5 Drug sensitivity assays for parental and SN-38-resistant cells against two non-camptothecin Top1-targeting drugs (NSC 725776/LMP776 and
NSC 743400/LMP400) in clinical trial and two clinical Top2-targeting drugs (epirubicin and etoposide). Green solid lines are the parental cells and
blue dotted lines are the SN-38 resistant cells. Cells were exposed to drug for 48 h and cell viability determined using the MTT assay. Shown are
representative results

Table 3 Drug sensitivity IC50-values and relative resistances

Cell line SN-38 NSC 725776/LMP776 NSC 743400/LMP400 Epirubicin Etoposide

IC50 RR IC50 RR IC50 RR IC50 RR IC50 RR

HCT116-Wt 0.05 ± 0.01 1 0.06 ± 0.03 1 0.17 ± 0.1 1 0.09 ± 0.01 1 6.3 ± 2.8 1

HCT116-SN38 3.4 ± 0.6 67 47 ± 46 a 782 47 ± 46 280 0.2 ± 0.03 2.1 4.4 ± 3.5 0.7

HT29-Wt 0.13 ± 0.06 1 0.03 ± 0.01 1 0.07 ± 0.04 1 0.18 ± 0.02 1 9.9 ± 3.7 1

HT29-SN38 7.3 ± 1.7 55 1.2 ± 0.7 36 0.14 ± 0.04 2 2.0 ± 0.9 11 38 ± 17 4

LoVo-Wt 0.02 ± 0.004 1 0.02 ± 0.01 1 0.06 ± 0.02 1 0.11 ± 0.03 1 1.8 ± 1.9 1

LoVo-SN38 0.44 ± 0.2 20 0.09 ± 0.03 4.1 0.05 ± 0.03 0.8 0.95 ± 0.4 9 2.7 ± 1.6 1.5

Mean IC50-value (μM) ± standard deviation of three experiments. RR; relative resistance is the IC50-value of the resistant cell line divided by the IC50-value of the
parental (wild-type, Wt) cell line
aDid not reach IC50, so the actual IC50-value is larger than this. IC50-values for SN-38 are provided for comparison
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complexes than their corresponding SN-38 resistant cells,
in line with the drug sensitivity data. Secondly, cells were
exposed for 1 h to NSC 743400, as this drug showed strong
cross-resistance in HCT116-SN38, but not in HT29-SN38
and LoVo-SN38. In line with this, significantly fewer cleav-
age complexes were formed in HCT116-SN38 cells com-
pared to HCT116-Wt cells, whereas cleavage complexes
were comparable in parental and resistant HT29 and LoVo
cell lines.

Discussion
As Top1 is the sole target of camptothecins [8, 43],
Top1 alterations play a critical role in mediating resist-
ance to irinotecan and as a possible predictive biomarker
of response to irinotecan in mCRC. In the present study,
we characterized the Top1 status in three human colon
cancer cell lines with acquired resistance to the

irinotecan’s metabolite SN-38, investigating Top1 gene
copy number, genetic sequence, mRNA and protein ex-
pression, enzyme activity and formation of Top1-DNA
cleavage complexes following drug treatment of cells. In
addition, we investigated the cross-resistance to two
non-camptothecin Top1-targeting drugs and two Top2-
targeting drugs.
Compared to their sensitive parental counterparts, the

SN-38 resistant cells did not show noticeable changes in
the expression level of Top1, neither looking at mRNA
or protein expression. There appeared to be a relatively
good correlation between Top1 protein expression mea-
sured by Western blotting and ELISA. Furthermore, we
found the Top1 activity in SN-38-resistant cells, in the
absence of any drug treatment, to be either unchanged
or slightly reduced compared to parental cells. In previ-
ous studies, camptothecin response has been associated
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Fig. 6 Detection of Top1-DNA cleavage complexes following drug treatment of parental or SN-38 resistant cells. Cells were exposed to drug for
1 h, either a SN-38 (10, 1 or 0.1 μM) or b NSC 743400/LMP400 (1 μM). Formed cleavage complexes were measured by alkaline elution and are
given as DNA crosslinks (in rad-equivalent). Shown are mean values ± standard deviations of four replicates. P-values were calculated between
corresponding parental and resistant cell lines treated with 1 μM of either SN-38 or NSC 743400
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with high Top1 protein expression [16, 24, 26] or high
Top1 enzyme activity [15, 23–25]. Moreover, two studies
found a high Top1 mRNA expression to be associated
with camptothecin sensitivity [25, 44], while two others
did not [15, 45].
Looking at the TOP1 gene copy number in the SN-38

resistant cells using FISH, we identified changes in two of
the three resistant cell lines (HCT116-SN38 and HT29-
SN38). The first was a TOP1 gene copy gain in a subpopu-
lation of cells (about half of the cells) independently of
centromere-20, a marker for the chromosome bearing
TOP1 (HCT116-SN38), while the other was a loss of one
copy of chromosome 20 (including one copy of TOP1)
(HT29-SN38). Two cell line studies by McLeod and Keith
[21] and Romer et al. [17] demonstrated a positive correl-
ation between TOP1 gene copy number and sensitivity to
SN-38 and between gene copy number and protein ex-
pression, respectively. The positive association between
TOP1 amplification and expression of Top1 mRNA and
protein was confirmed by another study [22], and Top1
mRNA and protein expression have been shown to correl-
ate well in the NCI-60 cancer cell line panel [14].
Using primers covering the full coding region of

TOP1 we did a mutational analysis of the gene in the
SN-38 resistant and parental cells. Two of three resist-
ant cell lines did not harbor any mutations, while the
third (HCT116-SN38) harbored two mutations. Both
identified mutations were non-synonymous and het-
erozygous; one located at amino acid residue position
364 (c.1336C > T, R364K, arginine to lysine change) in
the Top1 core domain and the other at position 717
(c.2395G >A, G717R, glycine to arginine change) in the C-
terminal domain [27, 46]. Both were shown by multiple se-
quence alignment to be located at highly evolutionarily
conserved positions in the Top1 protein. Using TOP1 wild-
type and mutant specific primers, we showed by PCR that
the mutated cells (HCT116-SN38) expressed mutant TOP1
mRNA at a markedly higher level than wild-type TOP1
mRNA, even though the sequencing analysis suggested
heterozygosity of the mutations. TOP1 containing a single
mutation (R364K or G717R) appeared to be expressed at a
higher level than double-mutant TOP1, suggesting that the
mutations are present on separate alleles or in separate
subpopulations in the HCT116-SN38 cells, each of them
conferring resistance. This is in accordance with the FISH
analysis, which detected two subpopulations in the
HCT116-SN38 cell line. In line with these findings, we
demonstrated that Top1 activity in nuclear extract from the
HCT116-SN38 cell line was largely unaffected in the pres-
ence of high doses of SN-38, which completely eliminated
the Top1 activity in parental cells, while the Top1 activity
in drug absence was the same in HCT116-SN38 and paren-
tal cells. Furthermore, we measured the degree of formation
of Top1-DNA cleavage complexes by alkaline elution

following SN-38 treatment of cells, and showed that far
fewer complexes were formed in HCT116-SN38 cells com-
pared to parental cells. These findings suggest that SN-38
binding to Top1-DNA is hindered in the mutation-
harboring cells. In previous studies, identified TOP1 muta-
tions have clustered in regions close to the structural site
where Top1 binds DNA and camptothecin, i.e. the regions
361–364 (DNA minor groove), 503–533 (minor groove)
and 717-729 (major groove) [11, 47]. Some mutations have
been shown to hinder binding of drug, while others
destabilize the drug-Top1-DNA cleavage complex or en-
hance Top1 DNA religation. Other mutations have also
been identified in relationship to the linker region of Top1
[38, 48]. In a study by Li et al. [49] amino acids in the 361–
364 region was demonstrated to be involved both in en-
zyme catalysis and camptothecin resistance. More specific-
ally, experimental substitution of amino acids in the 361–
364 range, i.e. R362L (arginine to leucine) and R364G (ar-
ginine to glycine) was shown to affect the catalytic activity
of Top1, however R364G only slightly reduced the activity
compared to wild-type enzyme [49]. Furthermore, Li et al.
[49] showed that R364G Top1 was able to bind DNA with
the same affinity as wild-type enzyme, however camptothe-
cin was largely unable to bind R364G Top1-DNA cleavage
complexes and cause DNA breaks. In addition, a R364H
(arginine to histidine change) mutation was previously de-
scribed in two camptothecin resistant prostate cancer cell
lines [50]. The R364H mutation did not affect the catalytic
activity, but rendered the cells resistant to camptothecin
[50]. As lysine is a large positively charged amino acid, simi-
lar to histidine, it is very likely that R364K Top1 is function-
ally similar to R364H Top1. Several other mutations
associated with camptothecin resistance have previously
been reported in the amino acid region 361–365 of Top1
[51–55]. The C-terminal domain of Top1 is known to be
involved in both enzyme catalytic activity and drug binding
[27], and several camptothecin resistance-associated muta-
tions have been reported in the 717–737 region [56–62],
including a pair of mutations in a tumor sample from a cis-
platin/irinotecan treated lung cancer patient [29]. A
camptothecin-associated mutation at position 717 (G717V,
glycine to valine change) has previously been reported to-
gether with the mutation T729I [56]. The authors showed
that the mutation-harboring cells displayed similar Top1
catalytic activity as wild-type cells, and that each mutation
on its own rendered yeast cells resistant to camptothecin
[56]. Losasso et al. [62] investigated various amino acid sub-
stitutions in the 729 position, and suggested that this pos-
ition is part of a hydrophobic pocket important for drug
sensitivity [62]. Recently, mutations have also been reported
in the linker region (amino acid residues 636–712), be-
tween the core and C-terminal domains of Top1 [38, 48].
Losasso et al. [48] investigated a resistance-associated mu-
tation at position 653 and suggested that altered Top1
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linker flexibility is a likely mechanism of resistance [48].
Gongora et al. [38] have subsequently identified other mu-
tations in the linker region, which could confer resistance
by this mechanism [38]. One of the linker region mutations
found by Gongora et al. (Glu710Gly) was further analyzed
in S. cerevisiae and the data indicated that a fully functional
linker region of Top1 is important to confer camtotethecin
sensitivity [63]. We did not detect any TOP1 mutations in
the two other SN-38 resistant cell lines (HT29-SN38 and
LoVo-SN38). However, even in these cells Top1 activity
was unaffected by the presence of large concentrations of
SN-38, and thus other mechanisms must be responsible for
this finding.
Lastly, we assessed the three SN-38 resistant cell lines for

cross-resistance to two non-camptothecin Top1-targeting
drugs in clinical trials (indenoisoquinolines: NSC 725776/
LMP776/indimitecan and NSC 743400/LMP400/indote-
can) and two clinical Top2-targeting drugs (epirubicin and
etoposide). All three SN-38 resistant cell lines displayed no
or very little cross-resistance to etoposide, a specific Top2
inhibitor [12, 13, 46], while showing more but still only
partly cross-resistance to epirubicin, a DNA intercalating
Top2 inhibitor [64]. Previous studies have demonstrated
that reduced activity of Top1 can be compensated by in-
creased activity of Top2 and thus increased sensitivity to
etoposide [65, 66], and furthermore that camptothecin-
resistant cells retain sensitivity to Top2-targeting drugs
[50]. In the three SN-38 resistant cell lines, the indenoiso-
quinolines displayed an interesting pattern of resistance,
from full cross-resistance to no cross-resistance. The two
indenoisoquinolines are currently in clinical development
[67]. In the present study, the cell line harboring the
R364K-G717R mutations (HCT116-SN38) showed very
strong cross-resistance to LMP400 and LMP776. The two
SN-38 resistant cell lines, which did not carry any muta-
tions in TOP1 (HT29-SN38 and LoVo-SN38), were partly
cross-resistant to LMP776, while showing either no or only
small cross-resistance to LMP400. Studies in our laboratory
[36] showed that HT29-SN38 and LoVo-SN38 both
strongly upregulated expression (mRNA; 25- and 60-fold,
respectively) of the well-known drug-efflux pump
ABCG2 (BCRP) [68, 69], while HCT116-SN38 did not
(data not shown). This suggests that LMP400 can
remain active in cancers resistant to SN-38, which dis-
play upregulation of this multidrug resistance protein,
if TOP1 is wild-type. This is in line with a previous
study by Antony et al. [35], where LMP776, but not
LMP400, was shown to be a weak substrate of the
ABCG2 pump. LMP400 was thus effective in cells
overexpressing ABCG2, which displayed a 46-fold re-
sistance to SN-38 [35]. Our experiment measuring
Top1-DNA cleavage complexes following treatment
with LMP400 supported the cross-resistance findings.
These results highlight how the underlying molecular

mechanism of camptothecin resistance in cancer cells
determines their resistance-profile to new classes of
drug such as the indenoisoquinolines.

Conclusions
We generated three SN-38-resistant human colon cancer
cell lines and investigated Top1. We detected no difference
in the expression level of Top1 and no to very little reduc-
tion in Top1 activity in the absence of drug. A markedly
increased activity of Top1 in the presence of SN-38 was
seen in all three resistant cell lines. TOP1 gene aberrations
were detected in two of three cell lines, and a not previ-
ously reported pair of mutations in TOP1 was identified in
one cell line. The SN-38 resistant cells displayed an inter-
esting pattern of cross-resistance to two indenoisoquinoline
Top1-targeting drugs: SN-38 resistant cells with mutant
TOP1 and no overexpression of drug-efflux pump ABCG2
were resistant to LMP400, while SN-38 resistant cells with
wild-type TOP1 and overexpression of ABCG2 remained
sensitive to LMP400. Furthermore, cross-resistance to
Top2-targeting drugs was not existent or limited. Thus, this
study adds to the growing knowledge about anti-cancer re-
sistance mechanisms for camptothecins and the new class
of indenoisoquinoline Top1-targeting drugs.
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