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Abstract

Background: Because of the complexity of the blood-brain barrier (BBB), brain tumors, especially the most common and
aggressive primary malignant tumor type arising from the central nervous system (CNS), glioblastoma, remain an essential
challenge regarding diagnostic and treatment. There are no approved circulating diagnostic or prognostic biomarkers,
nor novel therapies like immune checkpoint inhibitors for glioblastoma, and chemotherapy brings only minimal survival
benefits. The development of molecular biology led to the discovery of new potential diagnostic tools and therapeutic
targets, offering the premise to detect patients at earlier stages and overcome the current poor prognosis.

Main body: One potential diagnostic and therapeutic breakthrough might come from microRNAs (miRNAs). It is well-
known that miRNAs play a role in the initiation and development of various types of cancer, including glioblastoma.
The review aims to answer the following questions concerning the role of RNA theranostics for brain tumors: (1) which
miRNAs are the best candidates to become early diagnostic and prognostic circulating biomarkers?; (2) how to deliver
the therapeutic agents in the CNS to overcome the BBB?; (3) which are the best methods to restore/inhibit miRNAs?

Conclusions: Because of the proven roles played by miRNAs in gliomagenesis and of their capacity to pass from the

CNS tissue into the blood or cerebrospinal fluid (CSF), we propose miRNAs as ideal diagnostic and prognostic
biomarkers. Moreover, recent advances in direct miRNA restoration (miRNA mimics) and miRNA inhibition therapy
(antisense oligonucleotides, antagomirs, locked nucleic acid anti-miRNA, small molecule miRNA inhibitors) make
miRNAs perfect candidates for entering clinical trials for glioblastoma treatment.

Keywords: microRNA, miRNA based drugs, Antagomirs, Antisense oligonucleotides, miRNA masks, Small molecule
miRNA inhibitors, miRNA mimics, Biomarkers, Glioma, Glioblastoma

Background

Brain and other central nervous system (CNS) tumors
have an incidence of 29.4 per 100.000 persons in the
adult population and 31.5% of the newly diagnosed
tumors are malignant. [1]. Gliomas are tumors of the
CNS arising from the glial cells. Glioblastoma (grade IV)
is the most common primary malignant brain tumor
(47.1%) and is characterized by a poor prognosis despite
the available multimodal treatment (5.5% survival rate at
5 years) [1]. This can be explained through their hetero-
geneity, chemoresistance and infiltrative pattern that
makes complete resection difficult. Low-grade gliomas
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(LGG, WHO grade I-II) have better overall survival (OS)
of approximately 7 years, but ultimately, they progress
to high grade gliomas (HGG, WHO grade III-IV) [2].
The current standard of care protocol for glioblastoma
includes maximal safe resection of the newly diagnosed
lesion followed by radiotherapy and chemotherapy with
temozolomide (TMZ) [3]. Regardless of this, recurrence
of glioblastoma can be seen after a median of 6.9 months
[4]. Bevacizumab in addition to chemo- and radiotherapy
increases the progression-free survival for newly-diagnosed
cases, but further studies are necessary to verify its effi-
ciency in improving OS [3]. Due to the fulminant clinical
course that HGG usually have, the diagnosis is generally
too late. Unfortunately, in clinical practice, there are no
blood markers that would make the early diagnosis
possible [5].

The development of molecular biology led to the dis-
covery of new potential diagnostic tools and therapeutic
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targets, offering promise to overcome the current poor
prognosis and diagnose patients in earlier stages. One
potential therapy is based on microRNAs (miRNAs).

The majority of the human genome is transcribed into
non-coding RNA (ncRNA), and only 2-3% of the gen-
ome encodes protein-genes [6]. The most studied types
of ncRNAs are miRNAs. MiRNAs are a class of small
ncRNAs, made of approximately 22 nucleotides [7], that
are involved in gene-regulation at the post-
transcriptional level by inducing mRNA degradation and
translational repression. Additionally, it was shown that
miRNAs have also more complex mechanisms of action:
activating transcription, up regulating protein expres-
sion, interacting with RNA binding proteins, binding to
Toll-like receptors and inhibiting nuclear or mitochon-
drial transcripts [8]. Mature miRNAs or precursor tran-
scripts are well-known to be involved in the mechanisms
of carcinogenesis [9-12] and are potential new thera-
peutic targets and biomarkers.

This review aims to answer the following questions re-
garding the role of RNA theranostics for brain tumors:
(1) which miRNAs are the best candidates to become
early diagnostic and prognostic circulating biomarkers?;
(2) how to deliver the therapeutic agents in the CNS to
overcome the blood-brain barrier?; (3) which are the
best methods to restore/inhibit miRNAs?

Deregulation of miRNAs in brain tumors

Role of miRNA dysregulation in gliomagenesis

It is known that miRNAs play a role in the initiation and
development of various types of cancer [13, 14]. In the
past few years, the role of miRNAs in gliomagenesis has
been intensely studied. They can have tumor suppressor
properties or can act as oncogenes.

The dysregulation of the protein complex NF-kappaB
promotes tumor growth and angiogenesis in glioblast-
oma [15, 16]. The tumor suppressive miR-31 that targets
TNF receptor associated death domain (TRADD) and
inhibits NF-kappaB activation is deleted in the majority
of HGGs and therefore tumor proliferation is increased
[17]. MiR-16 also downregulates the NF-kappaB1/MMP9
pathway and is less expressed in glioma samples [18]. The
same study found that miR-16 could induce apoptosis by
inhibiting the expression of B-cell lymphoma 2 (BCL2), as
previously described in chronic lymphocytic lymphoma [18,
19]. BCL2 is an anti-apoptotic mitochondrial protein also
involved in the early stages of glioma cells proliferation and
progression to HGG [19-21]. One recent paper described
that miR-184 could act as a tumor suppressor miRNA in
gliomas by targeting TNF-a-induced protein 2 [22].

The microenvironment and the immune cells
Gliomas are able to manipulate the cells from the sur-
rounding microenvironment and promote cancerous cell
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migration, growth and immune evasion [23]. The
aggressiveness of GBM is partially caused by the inability
of the immune system to detetc its growth [24]. Micro-
glia are resident macrophage of the CNS, that play a role
in immune surveillance and host defence [25]. But the
morphological phenotype of the microglia and their
immune marker profile is strongly influenced by micro-
environmental factors [26, 27]. Microglial cells and
macrophages can turn to an M1 phenotype (or classic-
ally activated macrophages) or an M2 phenotype (or
alternatively activated macrophages) [28]. Granulocyte-
macrophage colony stimulating factor (GM-CSF), lipo-
polysaccharide (LPS), tumor necrosis factor-a (TNF-a)
and interferon-y (INF-y) promote the transformation of
microglial cells to M1 phenotype [28, 29]. Through se-
cretion of cytotoxic factors and presentation of tumor
antigen to T helper type 1 cells (Thl) cells, M1 cells
display their role in antitumoral immunity. [30]. Fur-
thermore, by activation of STAT1, M1 cells produce
pro-inflammatory cytokines and increase T-cell-mediated
cytolysis [30, 31].

MiR-155, a pro-inflammatory miRNA, was directly
linked to the M1 phenotype [32]. Glioma cells produce
IL-1 which strongly upregulates miR-155 in glial cells
[33]. MiR-155 is upregulated by LPS, TNF-a and INF-y
and targets the anti-inflammatory protein suppressor of
cytokine signalling 1 (SOCS-1) [34]. Thus, miR-155
leads to an increase of a series of inflammatory media-
tors such as the inducible nitric oxide synthase, IL- 6,
and TNF-a [34]. In glioblastoma, miR-155 is an
onco-miRNA that is highly expressed and its levels grad-
ually enhance with the increase of tumor grade [35].
MiR-155 knockdown enhanced the effect of temozolomide
through the induction of MAPK13 and MAPK14-mediated
oxidative stress and apoptosis, representing a potential
target for the treatment of glioma [35]. MiR-146 is
also induced by IL-1 and is upregulated in gliomas,
being a negative-regulator of astrocyte-mediated in-
flammation [36, 37].

The activation of M2 phenotype cells is due to the
presence of cytokines such as IL-4, IL-10, IL-13 and
transforming growth factor-p (TGF-P) [28, 38]. The M2
cells further produce immunosuppressive factors and ac-
tivate STAT3 [28]. STATS3 is a transcription factor which
decreases the expression of surface molecules for anti-
gen presentation and increases the expression of IL-10,
vascular endothelial growth factor (VEGF) and matrix
metalloproteinase, further promoting angiogenesis,
matrix remodelling and suppression of adaptive
immunity [38, 39].

Even with the particular immunological characteristics
of the CNS, the microenvironment can be used to
support immunotherapeutic options for the treatment of
brain tumors [40].
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MiRNAs and the blood-brain barrier

Molecular anatomy of the blood-brain barrier

One key obstacle in developing new drugs for CNS dis-
orders is the delivery of the therapeutic agents across
the blood-brain barrier (BBB). BBB represents a complex
structure that controls the passing of the nutrients and
oxygen from the blood stream to the brain and prevents
the accumulation of neurotoxins in the CNS. Dedicated
endothelial cells connected through tight-junctions (T7)
line the brain capillaries and interact with adjacent sup-
porting cells (astrocytes, pericytes, mast cells) forming
the neuro-vascular unit [41]. The astrocytes control the
permeability and preserve the integrity of the BBB [42].
They also create a link to the neurons by outlining the
basal lamina of the microvessels through their endfeet
[43]. Pericytes are essential for the development of the
BBB during embryogenesis. They are embedded in the
basal lamina and have a role in vesicle transport and
formation of TJ [41, 44]. The complex interactions
between the endothelial cells and surrounding cells pro-
mote the secretion of cytokines and subsequently disrupt
the integrity of the BBB and allow passage of circulating
immune cells and pathogenic agents [45].

BBB allows the passage of cationic or small lipid-sol-
uble molecules with a molecular weight under 400 Da
[46]. Transporters carry glucose and amino acids, while
molecules with a higher molecular mass, i.e., insulin and
transferrin, enter the BBB through receptor-mediated
endocytosis [47]. The barrier between the blood and
cerebrospinal fluid (CSF) is formed by the adapted epi-
thelial (ependymal) cells of the choroid plexus linked
through TJs and the arachnoid membrane which is also
made of cells connected by TJs [48]. Circumventricular
organs (CVOs), such as the pituitary gland and vascular
organ of lamina terminalis, have a microvasculature
characterized by high-permeability, allowing high mo-
lecular mass polypeptide hormones to exit the brain
[49]. The CVOs-CSF barrier is made of ependymal cells,
whereas tanycytes (modified ependymal cells) form the
brain-CVOs barrier [45].

MiRNAs altering the BBB

Numerous studies reported that miRNAs can modulate
the permeability and integrity of the BBB, especially in
pathological settings. Extracellular vesicles (EVs) con-
taining miR-181c disrupt the BBB and promote brain
metastasis from breast cancer by downregulating
3-phosphoinositide-dependent protein kinase 1 (PDPK1),
and subsequently altering the actin filaments [50]. Overex-
pression of miR-210 alters the BBB by targeting junctional
proteins (occludin and S-catenin) and aggravates cerebral
edema in neonatal rats with hypoxic-ischemic brain lesions
[51]. Aquaporin-11 (AQP11) is a membrane protein located
in the endothelial cells of the brain capillaries and the
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epithelial cells of the choroid plexus [52]. The BBB of
AQP-11 deficient mice has no structural or functional
changes [52]. However, a recent paper found that
miRNA-27a-3p mimic targets the up-regulated AQP11 and
has a protective effect on the integrity of the BBB in rats
with intracerebral hemorrhage (ICH) [53]. MiR-98 and
let-7 decrease the permeability of the BBB under neuroin-
flammatory setting by lowering the expression of cytokines
and the adhesion of leukocytes [54]. TNF-a alters the TJs
and therefore increases the permeability of the BBB [55].
TNE-a upregulates miR-501-3p in the white matter of mice
with cerebral hypoperfusion which leads to an inhibition of
zonula occludens-1 (ZO-1) protein and lowers the tran-
sendothelial electric resistance [56]. MiR-125a-5p over-
expression in endothelial cells leads to the formation of
stronger junctional complexes between ZO-1 and vascular
endothelial cadherin (VE-cadherin) [57].

How do miRNAs overcome the BBB?

Current evidence suggests that the BBB is not blocking
the passage of miRNAs between CSF and blood, but they
have a more diluted concentration in blood than CSF
[58]. It is known that in pathological states miRNAs can
pass from the brain tissue into the blood stream through
the BBB, making them potential biomarkers for CNS
diseases [59]. On the other hand, very little data exists
regarding the passage of miRNAs from blood into the
brain tissue. It is known that siRNAs, which have a
molecular mass of 14 kDa, similar to the miRNAs,
cannot diffuse through the BBB [60].

MiRNAs as potential therapeutic tools
In order to overcome this limitation, several delivery
methods have been developed. There are two main
delivery routes that can be used, locoregional (that is
used to by-pass the BBB) or systemic (that needs to
penetrate the BBB) and two types of packaging nanopar-
ticles, natural or synthetic. Locoregionally, nanoparticles
can be stereotaxically administered directly into the
tumor, or can be delivered in the tumor resection cavity
through biodegradable wafers or convection-enhanced
delivery (CED) [61]. Other methods include intrathecal
delivery directly into the CSF or placement of an
Ommaya reservoir (intraventricular catheter connected
to a reservoir placed under the scalp that is used for the
delivery of drugs) [61, 62]. For systemic delivery, natural
(exosomes), as well as synthetic particles (liposomes,
gold nanoparticles) have been used (Fig. la) [63-66].
The development of tumors in the CNS also leads to the
disruption of the BBB, making it easier for molecules to
pass the BBB, but given the characteristics of the tumor
vessels, the molecules also have a higher clearance [67].
Regarding the load of the nanoparticles, two funda-
mental strategies can be envisioned: (1) restoring the
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downregulated tumor suppressor miRNAs or (2) inhibi-
ting the overexpressed oncomiRs.

Restoring the downregulated tumor suppressor miRNAs
can be achieved with miRNA mimics, which are synthetic
double strand RNA molecules with identical sequence as
natural miRNAs that are able to integrate into the RNA
induce silencing complex (RISC) and perform the
anti-tumorigenic function of the missing miRNA. It was
also proven that single strand RNA mimetic therapy is
achievable in the brain tissue. Yu et al. injected single
strand RNA molecules directly into the brain of mice and
inhibited mutant Huntington proteins [68]. Recently, it
was shown that in vivo administration of miR-138, an in-
hibitor of both CTLA-4 and PD-1, induces tumor regres-
sion and prolongs the survival of immune-competent
mice, but not of immune incompetent mice [69]. It seems
that miR-138 is an ideal immune therapy for gliomas.
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The levels of a tumor suppressor miRNA can be
restored also indirectly, by reactivating the transcription
(targeting hypermethylation of silenced miRNA pro-
moter sites [70]; restoring a deleted genomic locus at the
DNA level (CRISPR/Cas9) or by inhibiting possible
miRNA sponges (long non-coding RNAs (IncRNAs) or
circular RNAs (circRNAs)) (Fig. 1b) which seem to be
more abundant in the brain, building complex coregula-
tory networks [71].

Anti-miRNA therapy aims to inhibit the expression of
oncogenic miRNAs which are overexpressed in the
tumor. Multiple mechanisms had emerged recently, that
could be translated into clinical practice. MiRNA inhi-
bition can be achieved by antisense oligonucleotides
(AMOs), miRNA masks, antagomirs, locked nucleic acid
(LNA) anti-miRNAs, small molecular miRNA inhibitors
(SMIRs) and miRNA sponges.
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Fig. 1 MiRNA therapy for glioblastoma. MiRNA therapy can be classified into miRNA restoration therapy (i.e. restoring tumor suppressor miRNAs)
and miRNA inhibition therapy (inhibiting oncomiRs). a The delivery of this potential therapy is hindered by the selective structure of the blood
brain barrier (BBB). We can envision two possible delivery methods - locoregional (post-surgery) and systemic. Locoregional is invasive but the
BBB is directly by-passed, the systemic delivery on the other hand is less invasive and can be repeated multiple times. The most suitable carriers
of this therapy are nanoparticles, which can be synthetic or natural, by offering the advantage of a higher half-time for the therapeutic agent, at a
lower dose and with fewer side effects. b The methods to achieve miRNA restoration therapies can be direct: delivery of miRNA mimics - single/
double strand synthetic RNA molecules that mimic the function of endogenous miRNAs or indirect: reactivation of transcription by using
hypomethilating drugs (Decitabine or 5-azacytidine); restoring the genomic locus of a miRNA using Crispr/CAS9 or vectors expressing the missing
miRNA or inhibiting ceRNA molecules that sponge anti-tumorigenic miRNAs. ¢ The inhibition of oncomiRs can be realized by AMOs (antisense
oligonucleotides) that covalently bind mature miRNAs and induce their degradation; antagomirs or LNA anti-miRs which are chemically modified
antisense RNA molecules, that have a higher stability and a lower degradation level compared to AMOs; small molecule miRNA inhibitors (SMIRs)
which block the function of specific miRNAs by structure-based binding to the precursor or mature form of miRNA; and miRNA masks which
block the miRNA response elements (MREs) on mRNAs so that miRNAs cannot achieve their inhibitory function
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AMOs are single RNA strands, that have a length
similar to miRNAs (approximately 20 nt) and that can
complementary and specifically bind to a mature
miRNA, leading to its inhibition [72, 73]. AMOs form
together with their target miRNAs RNA duplexes which
lead to the degradation of miRNAs by RNAse H. In
order to function in vivo, AMOs require chemical modi-
fications like 2'-O-methoxyethyl and phosphorothioate.
Oh et al. showed that by administering anti-miR-21 anti-
sense oligodeoxynucleotide carrier by R3V6 peptide
which has amphiphilic properties, directly in the
glioblastoma of a xenograft animal model, the apoptosis
of tumor cells was restored and consequently tumor
growth was blocked [74].

Antagomirs are single strand RNA molecules, contain-
ing 2'-methoxy groups and phosphorothioates, and
cholesterol conjugated in order to hinder degradation,
perfectly complementary to mature miRNAs. Antagomirs
form RNA duplexes with their miRNA target, leading to
the degradation of the miRNA and the recycling of the
antagomir [75]. When administered in murine models
harboring U87 glioblastoma tumors, antagomir-27a, the
proliferation and invasiveness were reduced by upregu-
lating the tumor suppressor FOXO3a [76].

LNA anti-miRs are AMOs in which the 2'-O and 4°'-C
atoms of the ribose ring are connected through a methy-
lene bridge, decreasing the flexibility of the ring and
inducing a rigid conformation [77]. These chemical
changes confer increased nuclease resistance and in-
creased binding affinity of LNA anti-miRs to their target
miRNAs [78]. Systemically delivery of anti-miR-21-LNA
coupled with multivalent folate (FA) conjugated
three-way-junction-based RNA nanoparticles (RNP)
(FA-3WJ-LNA-miR21 RNP) in an orthotopic glioblast-
oma xenograft mouse model promoted the apoptosis of
glioblastoma cells [79]. Other study showed that by ad-
ministering LNA-anti-miR21 and neural precursor cells
(NPC) that deliver a secreting type of tumor necrosis
factor—related apoptosis inducing ligand (S-TRAIL) in
murine glioblastoma models, a synergistic effect is
obtained leading to a reduced tumor volume [80].

SMIRs are small molecule chemical compounds that
bind precursor or mature miRNAs and prevent their
biogenesis, maturation or function [81]. ACIMMYR2
blocks the maturation of pre-miR21, leading to tumor
suppression in orthotopic mouse models [82].

The arsenal of anti-miRNA therapy is completed by
miRNA sponges. This strategy is based on the role of
other ncRNAs (i.e. IncRNAs and especially circRNAs) to
bind and inhibit the function of miRNAs. MiRNA
sponges can be specifically synthesized with multiple
miRNA binding site, and loaded into tumor cells, so that
a potent inhibition of oncogenic miRNAs can be
reached. This therapeutic method is appealing because
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recent data show that circRNAs are abundant in the
brain and function as natural sponges [83, 84]. Cell lines
and orthotopic glioblastoma mice models infected with
miR-23b sponge expressing lentivirus had decreased
angiogenic, infiltration and migration properties by down-
regulating MMP2, MMP9, VEGE, HIF-1a, B-catenin, and
ZEB1 and upregulating VHL and E-cadherin [85]. Indirect
inhibition of miRNAs is realized by miRNA masks.
MiRNA masks bind to the miRNA binding site on the
mRNA, called miRNA response element (MRE), and
protect the mRNA from miRNA inhibition [86] leading to
an up-regulation of the suppressed oncomiR targets.

Nadaradjane et al. demonstrated that miRNAs can also
be used to decrease the chemoresistance of glioblastoma
cells [87]. By administering in glioblastoma mice models
miR-370-3p and TMZ the tumor volume reduced by
two-fold when compared to TMZ alone. Also, orthoto-
pic xenografts of P-GBM2 cells with miR-198
overexpressed, showed a significant decrease of che-
moresistance to TMZ and reduced tumor growth [88].
Chen et al. showed that in GBM xenografts treated with
miR-181b the tumor growth was suppressed and the
sensitivity to TMZ was increased through the downregu-
lation of EFGR [89].

Intravenously delivery of miR-142-3p lead to an
increased survival of mice bearing GL261 tumor cells
by inducing the apoptosis of M2 immunosuppressive
macrophages [90]. Finally, miRNA therapy can be
combined with oncolytic viral treatments. Semliki Forest
virus-4 (SFV-4) has oncolytic properties. Systemically
delivery of engineered SFV-4miRT (containing target
sequences for miR-124, miR-125 and miR-134 to reduce
its neurovirulence) increased the survival of glioma and
neuroblastoma mice models [91].

When administered intravenously in murine glioma
models, miR-124 led to an inhibition of glioma growth.
The same effect was observed when miR-124-transfected
T-cell were adoptively transferred into tumor-bearing
mice. MiR-124 inhibited STAT3 pathway and reversed
glioma stem cells mediated immune suppression of
T-cell proliferation and induction of Forkhead box P3
regulatory T cells [92].

More recently, two papers explored the therapeutic
effect of manipulating more than one miRNA. Bhaskaran
et al. demonstrated that combined administration of mul-
tiple miRNAs, miR-124, miR-128, miR-137, which inhibit
multiple oncogenes, and chemotherapy, led to an
increased survival in intracranial GBM murine models.
Also, interestingly, in vivo data showed that, the cells over-
expressing these miRNAs deliver the miRNA cluster to
nearby cells via EVs and subsequently promote a wide-
spread antitumoral effect [93].

By running an in silico analysis based on differentially
expressed miRNAs in GBM and their target genes,
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Xiong et al. identified three new potential miRNA-based
agents for GBM therapy (gefitinib, exemestane and
W-13) [94]. Using this approaches one might resolve the
heterogeneity problem that arises in GBM.

MiRNAs as potential diagnostic tools

A biomarker is a biological indicator, that can be objec-
tively measured, which reflects the risk or presence of a
disease [95]. The utility of biomarkers in managing brain
tumors has grown in importance over the past decades,
some being already used in daily medical practice, e.g.
the methylation of the promoter of the gene for
O°-methylguanine-DNA methyltransferase (MGMT). In
the latest WHO classification of CNS tumors, molecular
characteristics are taken into account to define the diag-
nosis [96]. One of the extensively studied biomarkers are
miRNAs, and although they are not currently used in
clinical practice; advances in this field show that their
utility in the oncologic diagnostic process may be cru-
cial, and could replace specific steps in current diagnos-
tic practices. For example, replacing a traditional tissue
biopsy with a so called “liquid biopsy” would spare the
patient and the doctor a diagnostic surgical intervention.
Also, given the heterogeneity of gliomas, using only a
small tissue sample obtained from surgery or a biopsy
could lead to an undergrading, like it was demonstrated
for Isocitrate Dehydrogenase (IDH) wild-type gliomas
[97]. More than that, biomarkers could indicate patient
prognosis, guide the treatment, and be used as a screening
tool in the follow-up process. But in order to do that, they
need to be highly specific, standardized and reliable.

In CNS disorders, the liquid biopsy can be performed
by studying either blood or CSF samples. While obtain-
ing a blood sample is less invasive, using CSF can be
more reliable since it is in close contact with CNS struc-
tures and has a higher miRNA concentration [58, 98].

Regarding blood derived products (Table 1), one of the
most studied single miRNA is miR-21. A 2015 meta-
analysis pinpointed this miRNA to be the most powerful
single miRNA in brain cancer diagnostics [99]. In one
study, it has been shown that, alone, miR-21, can differ-
entiate between glioma and healthy controls with suffi-
cient sensitivity and specificity. Still, in the same study, it
was not possible to distinguish between glioma and
other brain tumors (meningiomas or pituitary tumors)
[100]. Two other studies include mir-21 in a three-
miRNA panel, D'Urso et al. propose a diagnostic tree, by
adding mir-15b to differentiate between glioma and
other conditions (including neurologic conditions, brain
metastases and Primary Central Nervous System
Lymphoma (PCNSL)), and mir-16 to differentiate be-
tween different grades of glioma [101]. Besides miR-21,
Santangelo et al. add miR-222 and miR-124-3p to distin-
guish between glioma grades and healthy controls and
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report post-surgical normalization of miRNA serum
levels, outlining their potential use in monitoring disease
recurrence [102].

Some studies compared glioma patients to patients
suffering from other brain cancers and healthy con-
trols, miR-185 has been shown to be significantly de-
creased in glioma, compared to other brain cancers.
Also, the serum levels of the same miRNA have been
linked to worse prognosis [103]. Similarly, miR-205
has been shown to differentiate between all-grades gli-
oma and healthy controls, and to be significantly de-
creased in glioma compared to meningioma, PCNSL
and pituitary adenoma. More than that, the levels are
linked to lower Karnofsky Performance Scale (KPS)
score and worse OS [104]. Likewise, levels of miR-301
have been also screened in other brain cancers — men-
ingioma, PCNSL and pituitary adenoma and glioma.
The levels of miR-301 are shown to be significantly
dysregulated in glioma. Also, serum levels of miR-301
were related to KPS score and normalize postopera-
tively, suggesting the possible use of this miRNA in re-
currence screening [105].

Other studies compare glioma patients with healthy
controls only, and focus on different single miRNA
dysregulation: miR-29 can be used to distinguish between
high grade glioma and healthy controls [106]; miR-203
helps to differentiate glioblastoma from low-grade glioma
and healthy controls and is linked with lower KPS and OS
[107]; miR-137 is stepwise down-regulated in higher gli-
oma grades and predicts lower OS [108]; miR-210 can be
used to distinguish between all grade gliomas and healthy
controls [109]; miR-221/222 family might differentiate
glioma from healthy controls (grades not specified in this
study) [110]; mir-125 alone [111] or together with
miR-497 [112] are able to distinguish between glioma
grades and healthy controls; miR-397a, b, ¢ [113] miR-122
[114], and miR-182 [115] can distinguish glioma from
healthy controls and are related to worse overall survival;
miR-451a [116] and miR-454-3p [117] differentiate glioma
from healthy controls, and their serum levels return to
normal after surgery. Xu et al. propose a three miRNA
signature (miR-17, miR-130a, miR-10b) to differentiate
between glioma and healthy controls [118]. Likewise,
Manterola also suggests a three small RNA signature
including two miRNAs (miR-320, miR-574-3p) and
RNU6-1, that can differentiate between GBM and
healthy controls, but only the latter withstands their
validation study and is significantly upregulated [119].

Two miRNAs — miR-128 and miR-342-3p have been
both reported by 2 different studies to be useful in the
differentiation of glioblastoma from healthy controls.
Mir-128 has been reported to be upregulated in one
study, while being downregulated in the other, a possible
explanation for this fact being the different biofluids
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used for miRNA analysis, one using plasma, the other
whole blood cells [100, 120]. One of the studies also re-
ported the post-surgical and post-chemoradiation
miRNA upregulation [100]. Interestingly, a third study
focusing on mir-128, reports its ability to differentiate
between glioma and healthy controls. Also, it mentions a
good ability to differentiate Grade I from Grade II-IV.
Besides that, its serum level elevation after surgery is
linked to a lower KPS score [121].

Other studies use multiple miRNA signatures as bio-
markers. Yang et al. propose a highly accurate seven
miRNA panel [122]; Zhi et al. a nine miRNA panel [123],
both studies being able to distinguish glioma from healthy
controls, while showing postoperative normalization of
serum levels.

While most of the studies focus on high grade glioma,
Goze et al. propose three miRNAs signature (miR-93,
miR-590-3p, and miR-454) to differentiate diffuse LGG
from healthy controls [124].

Regarding CSF miRNA analysis (Table 2), miR-21
upregulation has been reported by several studies to
differentiate between glioblastoma and healthy controls
[125-127]. Still, miR-21 expression levels in CSF could
not distinguish between CNS metastases and PCNSL
[125, 127]. Likewise, miR-10b is not normally found in
healthy brain tissue (ergo, not in CSF), its presence indi-
cating a malignant brain process. Despite this, miR-10b
is not able to differentiate glioblastoma from brain
metastases [127]. Likewise, miR-200 is not normally
present in CSF of healthy individuals but is over-
expressed in both glioma and brain metastases. The levels
of expression are significantly higher in the metastases,
therefore, making it a promising tool in differentiating
glioblastoma from metastases [127]. Similarly, miR-15b
CSF levels have been reported to be markedly elevated in
glioblastoma compared to PNCSL and metastases. There-
fore, the authors propose an accurate diagnostic tree using
miR-15b and miR-21 [125]. Two other studies focused on
CSF miRNA signatures in glioblastoma. Akers et al
propose a nine-miRNA panel after testing CSF tapped
from two distinct locations — cisternal and lumbar, prov-
ing a relatively high sensitivity in the first (80%), and a
relatively low in the latter (28%), in distinguishing glio-
blastoma from healthy controls. However, the utility of
cisternal CSF diagnostics is limited to selected patients
with an implanted ventriculo-peritoneal shunt or an
Ommaya reservoir [128]. Interestingly, Drusco et al
analyzed a set of primary and secondary brain tumors and
proposed a diagnosis diagram based on this five miRNA
panel to differentiate between types of brain tumors [129].

Based on an exhaustive research of miRNA databases,
scientific papers on microarray datasets and existing
commercial PCR arrays, Toraih et al. propose an 84
miRNA panel to diagnose glioblastoma. Interestingly,
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the authors report a relatively modest overlap in both
microarray datasets, as well as available ready-made
miRNA panels. However, in the latter case, only 2 out of
4 miRNA panels (Qiagen, Exiqon) are brain tumor spe-
cific, while the remaining 2 — one screens for all types of
cancer (GeneCopoeia) or is “customer-made array” (Life
Technology — Thermo Fisher Scientific), this accounting
for the observed heterogeneity [130]. Nevertheless, this
initiative is promising, specialized diagnostic panels re-
presenting a step forward from scientific research to
clinical practice.

Altogether these data show that miRNA have the
potential to be the future biomarker for brain tumors
that could solve crucial clinical problems: screen patients
at risk for brain tumors, follow-up patients after surgery
to monitor recurrence or even stratify patients in diffe-
rent risk groups.

By analyzing the data on miRNA biomarkers for
brain tumors it is easy to observe that multiple prob-
lems exist. Firstly, some of the proposed miRNAs are
not specific for brain tumors. For example, miR-21,
miR-29, miR-125b, are documented to be found in
other types of cancers [106, 111, 127]. Secondly, as
mentioned, contradictory findings regarding miR-128
in glioma have been reported, found to be upregu-
lated in one study [120], while being downregulated
in others [100, 121].

Unfortunately, research is held back by the vast
heterogeneity between studies, which makes it almost
impossible to compare data between study groups and
to summate the data in order to assess the value of miR-
NAs as biomarkers. In our view, this heterogeneity is
also an important limitation of any attempt to perform a
meta-analysis on this topic. The elements of hetero-
geneity are multiple and need to be outlined. Firstly, the
study populations are from different ethnical groups.
Differences in race specific miRNA expression have been
already proven in hypertension, breast and prostate
cancers [131-133]. This ethnical heterogeneity may also
influence miRNA expression in brain cancers.

Secondly, the selection of body fluids varies through-
out the studies. Even in blood derived products, studies
report either using serum, plasma or blood cells, while
studies focusing on CSF, extract it from lumbar or cister-
nal origin, this also accounting for heterogeneity. More
than that, as Schwarzenbach et al. outline, miRNA
expression levels can be influenced by various factors:
starting with circadian rhythms, up to sample preser-
vation, processing time, coagulation prevention and the
level of hemolysis [134].

Thirdly, the RNA extraction techniques differ from
study to study which is the case in our reviewed
studies, where multiple extraction techniques have
been employed. Kopkova et al. show how different
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RNA extraction kits and their usage can significantly
influence expression results, advocating for the need
of standardization [135].

Fourthly, the RNA detection method throughout stud-
ies is variable. A wide range of techniques have been
employed (Nanostring, Solexa, TagMan Openarray, Next
Generation Sequencing), usually for initial screening,
afterwards, selected miRNA expression levels being
confirmed through quantitative RT-PCR. Again, Kopkova
et al. suggest a significant expression variability, especially
in screening techniques. Finally, there is great variability
in qRT-PCR miRNA quantification in the presented
studies, most of them using a relative quantification, but
different molecules for normalization. Schwarzenbach et
al. review how different normalizers can lead to signifi-
cantly different quantifications of expression levels [134].
All these factors contribute to heterogeneous results in
miRNA research.

We can envision different methods to improve the
diagnostic power of miRNAs in brain tumors. Firstly, a
strategy to expand the already existing miRNA panels as
diagnostic tools is the use of the network theory. Each
miRNA regulates tens to hundreds of mRNAs [136] and
the intracellular mobility mechanisms of miRNAs
suggests that this class of molecules are part of complex
regulatory networks [137]. By using the expression of
multiple miRNAs, it is possible to build miRNA net-
works, which contain not only data regarding the level
of the miRNAs, but also characterize the relationship
between miRNAs [138]. In various cancers, it was shown
that compared to the normal status, the miRNA network
becomes disconnected and fragmented [139].

Secondly, by adding other molecules with diagnostic
potential to the miRNA panels, we could increase diag-
nostic accuracy. Circulating tumor DNA (ctDNA) has
proven to be relatively abundant in the serum of patients
with several human cancers, although in brain cancers
the detection rate is lower [140]. Still, in this patient
category ctDNA can be found more in CSE, where
tumor-specific mutations can be detected, or even
sequenced for mutation detection [140-142]. Research
on IncRNAs also reported positive results regarding their
use as biomarkers for brain tumors [143]. Even the role
of circular RNAs, which are intertwined with miRNAs
by acting as sponges, has been studied in glioma, and
their implications in pathogenesis, progression, asso-
ciations with pathological grade and prognosis have been
reported, their potential use as biomarkers cannot be
excluded [144, 145].

Thirdly, by having a clear picture of the miRNA
bio-dynamics, understanding the mechanism through
which miRNAs travel in blood or in the CSF could also
improve the diagnostic method. A 2015 review by
Witwer highlights many pitfalls in the common
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understanding of miRNA dynamics. Also, he underlines
the role of cancer specific extracellular vesicles, and how
analysis of surface lipids and proteins (e.g. EpCAM) of
these vesicles could predict the origin and maybe even the
destination of the vesicle and of its cargo, rendering better
specificity in cancer diagnosis [146]. In our opinion, the
merging of both EV surface proteins and miRNA contents
and rendering of diagnostic trees may increase the
diagnostic power of miRNAs in brain tumors.

Conclusion

Despite tremendous efforts to develop new diagnostic and
therapeutic tools to improve the survival in glioblastoma
patients, minimal advances have been made. These efforts
underline that a paradigm shift is necessary, a transition
from protein based diagnostic biomarkers and therapies
to RNA based ones.

Because of the proven roles played by miRNAs in glio-
magenesis and of their capacity to pass from the CNS
tissue into blood or CSF, we propose miRNAs as ideal
diagnostic and prognostic biomarkers. In order to achieve
this desiderate and confirm the potential of miRNAs a
standardization of future studies is necessary: (a) use of
similar biofluids for diagnostic; (b) use of similar RNA
extraction methods; (c¢) use of similar normalization
methods. Additionally, we consider that the specificity
and sensitivity of diagnostic tests can be increased by
using miRNA diagnostic trees or miRNA networks.

Moreover, miRNAs represent a possible new therapy
for glioblastoma. Because of their wide mechanism of
action, miRNAs are an ideal treatment for an extremely
heterogeneous tumor type. In vivo therapy data shows
that miRNAs can reactivate the immune system [69] or
attenuate drug resistance [87] — two of the limitations of
current therapies. One of the most important restric-
tions of this unmet medical need is the delivery of RNA
therapeutics into the CNS, over the BBB. In recent years
novel carriers were developed and synthesized which
could overcome this limitation, and because of their
structure and small molecular weight, miRNAs are the
ideal loading of these delivery mechanisms.
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